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Abstract

We investigate the use of Bayesian regression models to forecast short-term financial returns using
both daily and intraday S&P 500 data. A rolling-window Bayesian linear model with shrinkage
priors and Student-t likelihood is implemented using PyMC. We evaluate predictive accuracy and
use the posterior distribution to guide trading decisions. The model is benchmarked against classical
baselines (OLS, Ridge, Lasso). We find that predictive accuracy is only slighly higher than chance,
for daily data, and performs suboptimally for intra-day data. However, the research also finds that
the Bayesian model does quantify uncertainty well.
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1 Introduction

Problem Statement

Forecasting financial asset returns is a longstanding challenge in quantitative finance and portfolio
management. While markets are widely believed to be efficient in the short term, small but ex-
ploitable predictive signals may exist, particularly when uncertainty is properly quantified. Other
common approaches to financial forecasting or trading algorithms include Autoregressive-Moving
Average (ARMA), Generalised Autoregressive Conditional Heteroskedasticity (GARCH), or po-
tentially machine learning methods such as reinforcement learning. This research attempts to use
Bayesian regression techniques within machine learning to develop a trading algorithm for longer
term and high-frequency trading.

Motivation and Relevance

This project investigates the use of Bayesian linear regression models to forecast short-term returns
on the S&P 500 index, using both daily and intraday data. The Bayesian framework allows us to
incorporate prior beliefs, apply shrinkage through regularising priors, and obtain full posterior
distributions rather than just point forecasts. This enables uncertainty-aware decision-making,
which is particularly relevant in financial applications where risk control is as important as predictive
accuracy.

We implement a rolling-window Bayesian regression model with Laplace priors on coefficients
and a Student-t likelihood to account for heavy-tailed return distributions. Inference is performed
via automatic differentiation variational inference (ADVI) using PyMC. The predictive distribution
is then used to make directional trading decisions under simple threshold-based strategies. To
benchmark performance, we compare against classical linear models such as ordinary least squares
(OLS), Ridge regression, and Lasso. In the financial simulations we assume no transactional costs,
for the sake of simplicity.

Structure of the Report

The remainder of the report is organised as follows. Section 2 describes the datasets and fea-
ture construction. Section 3 presents the Bayesian modelling framework and inference procedure.
Section 4 outlines the baseline models. Section 5 reports empirical results, including forecasting
accuracy and trading performance. Section 6 concludes.
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2 Data Description

2.1 Daily SPY Data

We source daily SPY (S&P 500 ETF) prices and volumes from Yahoo Finance via the yfinance
API. Our main dataset spans January 1, 2014 through December 31, 2024, which gives approxi-
mately 2,700 trading days. For each trading day ¢ we record:

e Close price P, and Volume V;

e Log return r; = In(P;/P;_1)

Lagged returns r;_1,...,74_5

Simple moving averages SMA; and SMAjy (computed on price and shifted by one day)

e 5-day volatility o5 = std(ry_4.¢)
e 20-day volume z-score z; = (V; — Vg)/sd(Vag), shifted by one day

After computing these features we drop any rows with missing values from rolling or lagged op-
erations, leaving ~ 2700 complete observations. The volume z-score is simply to standardise the
trading volume relative to recent history.

2.2 Intraday Sample

To assess high-frequency robustness, we draw one-minute SPY data over the most recent 30 calendar
days, then randomly select ten trading days for intraday backtests. For each selected day we use
minute-level:

e Price and Volume between 09:30-16:00 ET

Minute return In(P,/P,_;)

Lag-1 return, 5-minute rolling mean/volatility

5- and 10-minute SMAs of price

20-minute volume z-score

We then apply a 60-minute rolling window for feature computation and Bayesian forecasting.

2.3 Summary Statistics

We start the analysis by calculating the styalised statistics for the returns data.

Mean return  SD return

Daily (2014-2024) 0.000493  0.010864

Table 1: Empirical mean and standard deviation of daily SPY log-returns.

As is standard for finanical returns we see a mean return close to zero, in this case the returns
are positive which is expected for a 10 year period of SPY data where overall we expect growth.
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Test Statistic  p-value
Shapiro-Wilk (normality) 0.8841 < 0.001
Jarque-Bera (normality) 22513.38 < 0.001

Ljung-Box on squared returns (lag 10)  3637.85 < 0.001

Table 2: Normality and volatility-clustering diagnostics for daily SPY returns.

Next we investigate the normality conditions with the Shapiro-Wilk test and Jarque-Bera, then the
Ljung-Box test to analyse volatility clustering.

These results show the typical findings for financial data, returns do not appear to be normally
distributed. The results from the Ljung-Box test do show the prescence of volatility clustering over
the period of two trading weeks.

The autocorrelation function (ACF) plot shows that there is no significant prescence of day-to-
day correlation between the returns

SPY Daily Price (2014-2024)
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Figure 1: SPY daily closing price (2014-2024).

From this price plot we can see an overall growth in the value of the S&P-500. Also visible are
the crashes from COVID-19 in early 2020 and the interest rate/high inflation crisis during 2022.



Bayesian ML Project Report 6

3 Methodology

In this section we describe our Bayesian regression framework, the sequential rolling-window eval-
uation, and our choices of priors and inference algorithm.

3.1 Bayesian Linear Regression Model

Let x; € R? denote the p-dimensional feature vector at time ¢ (five lagged log-returns, two moving
averages, rolling volatility, volume z-score), and let y; be the log return on the next trading day.
We use a linear model with Student-t¢ observation noise:

Yt | x¢, B, 0,0 ~ Student—t(u, e = X;—B, a) .

Here B = (B1,...,Bp) are the regression coefficients, ¢ > 0 is the scale of the noise, and v > 2 is
the degrees-of-freedom which impacts tail thickness. Student-t has the advantage over the Normal
distribution for modelling financial returns due to their heavy tailed nature.

3.2 Priors on Parameters

To impose shrinkage on coefficients and guard against over-fitting in small samples, we choose
independent Laplace (double-exponential) priors on each j;,

Bj ~ Laplace(u:(), b), ji=1,...,p,

where b > 0 controls the strength of /1 shrinkage. For the noise parameters we now use weakly-
informative priors that encourage moderate dispersion but allow heavy tails if supported by the
data:

o~ HalfNormal(a = 1), Vo~ Gamma(a =2, = 0.1),

where the Half-Normal prior on o centers the scale around unity (on the standardised y—scale) and
the Gamma prior on v places negligible mass at ¥ — 0 while allowing for moderately heavy-tailed
Student-t errors.

The use of a flexible Student-t likelihood with these priors is based off the STAN documentation [I]
and a paper titled Model-Based Clustering of Non-Gaussian Panel Data Based on Skew-t¢ Distri-
butions [2].

3.3 Hyperparameter Selection

Laplace prior scale b. To choose the shrinkage strength b in our Laplace prior 8; ~ Laplace(0, b),
we performed a fast one-step-ahead cross-validation over 20 equally spaced test time points. For
each candidate

b € {0.001, 0.01, 0.1, 0.15, 0.2, 0.5, 1.0},

we refit the Bayesian model on the prior 252 trading days, forecast the next day, and computed
the squared prediction error. Averaging these 20 errors gave a CV MSE, and we selected

b=0.001 (CV MSE = 1.8245 x 107%).

See Table [5] in the Appendix for the full results.
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Baseline model penalties. For our Ridge and Lasso benchmarks we instead used a proper
time-series cross-validation (no shuffling) via TimeSeriesSplit(n_splits=5). We scanned

QRidge € {0.001, 0.01, 0.1, 1.0, 10.0}, arasso € {1074, 107, 1072, 107},
refitting on each growing train-set and evaluating RMSE on the hold-out block. We then picked the
« minimising the average CV RMSE. These selected values were used in all downstream baseline
forecasts.

3.4 Sequential Rolling-Window Inference

We evaluate predictive performance in a realistic “walk-forward” scheme. Let T be the total number
of observations. For each t = W, W + 1,...,T — 1, where W = 252 (one trading year), we:

1. Extract the training set {(x;,v:)} 2} -
Standardise each feature by its training-set mean and standard deviation.
Build the Bayesian model on the scaled training data.

Fit the variational approximation to the posterior via ADVI (10,000 iterations).

Draw N = 500 posterior samples of (3,0, v).

S ok wN

Forecast y; by passing x; (scaled by the same training transform) through the posterior
predictive Student-t.

7. Store the predictive mean and standard deviation for evaluation.

By refitting each day on only past data and standardising within each window, we avoid any
look-ahead leakage. The result is a sequence of fully Bayesian one-step-ahead forecasts that incor-
porate parameter uncertainty and heavy-tailed noise.

3.5 Variational Inference

Because our model uses a heavy-tailed Student-t likelihood and shrinkage (Laplace) priors, we can’t
solve for the exact posterior in closed form. Instead, we lean on PyMC’s Automatic Differentiation
Variational Inference (ADVI )routine to quickly and efficiently approximate it. ADVI approximates
the joint posterior p(3,0,v | D) with a mean-field normal variational family,

q(a) - HN(GJ ‘ M]vp_?)v 0= (617"'75]77 lOgO', IOgV),
J

by maximising the evidence lower bound (ELBO). We run ADVI for 10,000 iterations per window,
monitoring the ELBO trace to ensure convergence, and then draw 500 samples from ¢(@) for
posterior predictive checks.

3.6 ELBO Convergence Diagnostics

During each ADVTI fit we record the evidence lower bound (ELBO) at every iteration, which acts as
a surrogate for the true log-marginal likelihood. A well-behaved VI run will show a monotonically
increasing ELBO (or equivalently decreasing —ELBO loss) that plateaus before the chosen iteration
limit. We perform 10,000 ADVI steps per window and plot the final ELBO trace (Figure [2[) to
verify that the approximation has stabilised. This diagnostic ensures that our 500 posterior draws
are sampled from a variational distribution that has in fact converged.
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3.7 Intraday Trading

To test how the Bayesian model performs at a finer timescale, we conduct a separate intraday
experiment on ten randomly selected trading days within the most recent 30-day window. For each
chosen day we:

1. Download one-minute SPY prices from 09:30 to 16:00.

2. Compute minute-by-minute returns and the same set of features (lag-1 return, 5-minute rolling
average and volatility, 5- and 10-minute SMA, volume z-score).

3. Use a 60-minute rolling window to fit the Bayesian model via ADVI (10,000 iterations, 200
posterior draws) and forecast the next minute’s return.

4. Convert the predictive mean into a long/short position and measure P&L, and number of
trades for that day.

This intraday trading is to see how the model performs in a high frequency trading scenario.
A key weakness in this is that any asset price movements are effectively a random-walk /noise. We
expect the noise, and the limited sampling, to be too significant for the model to exploit any signal
and make a consistent profit.
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4 Baseline Models

In order to gauge the incremental value of our Bayesian regression, we first establish three classical
linear benchmarks. All models are refit each day on a rolling window of the previous 252 trading
days and used to forecast the next-day return. Our chosen models differ in how, or whether, they
regularise the coefficient estimates and balance bias—variance trade-offs.

4.1 Ordinary Least Squares (OLS)
BoLs = argmﬁin ly — X8| (1)

Ordinary Least Squares fits a linear relationship by minimising the sum of squared errors between
the predicted and actual returns. It imposes no explicit constraint on coefficient size, which makes
it susceptible to over-fitting when predictors are noisy or highly correlated. Nonetheless, OLS
remains the standard unbiased estimator in the absence of regularisation, and serves as a no-frills
baseline.

4.2 Ridge Regression
BRidge :argmﬂin“y—XBHQ—i-)\HﬂHz (2)

Ridge Regression augments OLS with an /5 penalty on the coefficient vector, effectively shrinking
all coefficients toward zero. The penalty weight, «, is selected by time-series cross-validation to
optimise out-of-sample mean-squared error. Ridge is particularly useful when many small signals
are spread across features or when multicollinearity inflates variance in the OLS estimates.

4.3 Lasso Regression
Brasso = argmin ly — XB|* + N8 (3)

Lasso applies an £; penalty, which can drive some coefficients exactly to zero and perform implicit
variable selection. This sparsity enhances interpretability by isolating the most predictive features
and guards against over-fitting when certain predictors carry negligible signal. Like Ridge, the
regularisation parameter is chosen via rolling cross-validation.

4.4 Comparison of Bayesian and Frequentist Linear Models

Although both the Bayesian and the classical (frequentist) benchmarks share the same linear pre-
dictor
Ht = X2—57

their estimation methods differ:

e Frequentist (OLS, Ridge, Lasso) Fit 3 by optimising a loss function on the data, least-
squares for OLS, plus an ¢y or ¢; penalty for Ridge/Lasso. These penalties can be seen
as MAP estimates under Gaussian or Laplace priors, but the frequentist stops at the point
estimate and does not provide a distribution over .

e Bayesian Places explicit priors on 8,0,v and infers the full posterior p(8,0,v | D) via
variational inference. This yields not only a central estimate (the posterior mean) but also an
uncertainty quantification (posterior variance) for every parameter and every one-step-ahead
forecast.
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In practice, with weakly-informative priors the Bayesian posterior mean often closely matches
the penalised-regression point estimates, but the Bayesian approach adds the benefit of more robust
uncertainty estimates.

Buy-and-Hold Benchmark In our trading performance comparison (Section 5) we also include
a simple “buy-and-hold” strategy that is always holding a long position in SPY to show how an
entirely passive investment would have performed over the same period. This passive baseline
contextualises any gains from forecasting, not just acting as a comparison against the asset price,
simply holding S&P-500 is a standard investment due to its relatively consistent long-term growth.
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5 Empirical Results and Discussion

5.1 Daily-frequency Performance

Model RMSE MAE Dir. Acc. (%) Sharpe

OLS 0.0118 0.0078 48.56 —0.30
Ridge 0.0116 0.0077 49.00 —0.10
Lasso 0.0112 0.0073 54.01 0.21
Bayesian 0.0112 0.0073 53.53 0.14

Table 3: One-step-ahead forecast performance and annualised strategy Sharpe for all models.

Figure [3| (in Appendix A) shows the cumulative wealth paths for the Bayesian strategy and the
market benchmark (buy-and-hold), both starting at 1.

Among the four approaches, Lasso and the Bayesian model achieve the lowest RMSE (0.0112),
whereas Lasso shows the highest directional accuracy (54.01%), with a positive annualised Sharpe of
0.21. The Bayesian model is a close second with MAE = 0.0073 and directional hit rate (53.53%),
producing a Sharpe of 0.14. In contrast, unregularised OLS and Ridge deliver poorer forecast
accuracy and negative threshold-trading Sharpe ratios, indicating that simple least-squares fits are
prone to overfitting in this noisy daily setting.

Notably, all four strategies underperform a passive buy-and-hold benchmark, which achieves
an annualised Sharpe of 0.71. This gap underscores two key points: first, regularisation (via ¢;
or Bayesian shrinkage) yields tangible improvements in short-horizon forecasts compared to OLS;
second, however, the residual noise in daily returns and the crude fixed-threshold trading rule limit
any meaningful outperformance. In practice, even small transaction costs would likely erase the
slim gains observed here.

5.2 Intraday Performance

Date Sharpe Accuracy P&L  Trades
2025-04-14 0.0816 0.5224 0.00403 10
2025-04-24 0.0205 0.4531 0.00064 9
2025-04-11 0.1261 0.5538 0.00937 10
2025-04-16 0.0241 0.4925 0.00083 5
2025-04-25 —0.0873 0.5303 —0.00255 11
2025-04-22 —0.0133 0.5000 —0.00050 5
2025-04-21 0.2212 0.5942 0.00659 1
2025-04-15 —0.1014 0.4091 —0.00442 12
2025-04-17 —0.1378 0.3913 —0.00756 4
2025-04-28 0.1694 0.5294 0.00561 3
Average 0.030314 0.4976 0.00120 7

Table 4: Intraday backtest results over 10 sampled trading days: per-day Sharpe ratio, directional
accuracy, P&L, and number of trades, with average accuracy and P&L.

Performance is highly variable day-to-day. While 2025-04-21 achieves a Sharpe above 0.2, several
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sessions (e.g. 2025-04-17) register negative risk-adjusted returns. This dispersion indicates that
minute-level noise dominates any predictive signal from our simple features. In a realistic setting
with transaction costs and slippage, such a strategy would likely struggle to break even.

Despite an average directional accuracy close to coin-flip (49.8%), the strategy still generates a
small positive P&L of 0.12% per day on average. This suggests that even marginally correct signals,
when weighted by position size, can produce modest gains in aggregate. However, the narrow gap
above 50% accuracy, combined with low per-trade edge, means that any realistic transaction costs
or slippage would likely eliminate these profits.

6 Conclusion

We have implemented a rolling-window Bayesian linear regression with Laplace priors (scale b =
0.001) and a Student-¢ likelihood, fit via 10 000-step ADVI with diagnostic ELBO traces (Figure .
On daily SPY returns (2014-2024), the Bayesian strategy achieved an RMSE of 0.0112, MAE of
0.0073, 53.5% directional accuracy and an annualised Sharpe of 0.14. Classical benchmarks showed
that Lasso (with a = 0.01) slightly outperforms Bayesian in Sharpe (0.21), while OLS and Ridge
delivered poorer forecasts and negative Sharpe. All four methods underperformed passive buy-
and-hold (Sharpe 0.71), underscoring the dominance of noise in daily returns and the limits of
fixed-threshold trading. Aditionally the chosen dataset exhibits high growth so holding the asset
from the start may have always been the most optimal strategy.

In our intraday robustness check ten one-minute sessions sampled from the most recent 30 days,
the Bayesian model averaged 49.8% accuracy, 0.12% daily P&L, 0.03 Sharpe, and 7 trades per day.
Performance varied widely (Sharpe from —0.14 to 0.22), indicating that minute-level noise quickly
erodes any signal and that transaction costs would likely eliminate these slim gains.

Overall, while Bayesian shrinkage yields comparable forecast accuracy to the best penalised
frequentist methods and provides full predictive distributions, the practical improvement in risk-
adjusted returns is modest. This reflects the inherently low signal-to-noise ratio of short-horizon
financial data. Moreover, our 2014-2024 sample spans the COVID-19 crash of early 2020 and
its rapid rebound, an extreme volatility regime that likely exacerbated forecasting difficulty and
hampered any simple threshold-based strategy in capturing transient market dynamics.

Future work could explore more dynamic priors and parameter selection and a more rigourous
trading strategy. Additionally instead of choosing just one asset if the model had access to many
different assets and was more focused on portfolio management this could return better results.
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A Supplementary Plots
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Figure 2: ELBO decay shows that approximation stabilises within the chosen 10,000 ADVI steps

Wealth Growth Over Time
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Figure 3: Cumulative wealth growth (starting at 1) for the Bayesian strategy versus Buy & Hold
(Market).
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Wealth Growth Over Time
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Figure 4: Cumulative wealth growth (starting at 1) for the OLS, Ridge and Lasso strategies versus
Buy & Hold.
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Autocorrelation of Daily SPY Returns
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Figure 5: Autocorrelation of daily SPY log-returns (lags 1-20).
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B Supplementary Tables

b CV MSE (x107%)

0.001 1.8245
0.01 2.1045
0.1 2.0867
0.15 2.1806
0.2 2.1029
0.5 2.0772
1.0 2.1204

Table 5: Cross-validation results for the Laplace prior scale b; the selected value is shown in bold.

Model « CV MSE
Ridge Regression
0.001 1.099522¢_¢2
0.01 1.099515¢.92
0.1 1.099476¢-02
1.0 1.099568,-92
10.0 1.099394¢_02

Selected 10.0 1.099394..92

Lasso Regression

0.0001 1.093164¢.92
0.001 1.072067 .02
0.01 1.070511¢.02
0.1 1.070511¢.02

Selected 0.01 1.070511..92

Table 6: Cross-validation results for the Ridge and Lasso penalty parameters. The selected o
(minimising CV MSE) is set in bold.
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