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3.1.3 Right-continuous (càdlàg) sample paths . . . . . . . . . . . . . . . . . . . 38

ii



3.1.4 Kolmogorov continuity theorem . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Definition and construction . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Inter-arrival times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.4 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Scaling and time-homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.3 Quadratic variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.4 Quadratic covariation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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4.6.2 Stochastic exponentials and Doléans-Dade exponential . . . . . . . . . . . 40

4.6.3 Exponential martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6.4 Girsanov’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6.5 Martingale representation theorem . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Numerical Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7.1 Euler-Maruyama method . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7.2 Milstein scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7.3 Higher-order methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.8 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.8.1 Stochastic integrals with respect to Poisson processes . . . . . . . . . . . 40
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Notation

R,N,Z,Q,C Real, natural, integer, rational, complex numbers.

B(R) Borel σ-algebra on R.

λ Lebesgue measure.

Ω Sample space.

F σ-algebra of events.

Ft Filtration up to time t.

P Physical (real-world) probability measure.

Q Risk-neutral (martingale) probability measure.

EP,EQ Expectation under P or Q. Assume under P unless stated otherwise.

ω A generic element of the sample space Ω, i.e. an elementary outcome.

1A Indicator of event A.

Xt Generic stochastic process.

Mt Generic martingale.

Wt Standard Brownian motion.

Nt Poisson process.

⟨X⟩t Quadratic variation of process X up to time t.

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt General stochastic differential equation.

St Asset price process.

Bt Bank account / risk-free asset.

r Risk-free rate.

Vt Derivative price process.

∆ Hedge ratio.

a.s.−−→ Convergence almost surely.

p−→ Convergence in probability.

Lp

−→ Convergence in Lp.

d−→ Convergence in distribution (weak convergence).
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Introduction

This aims to explain stochastic processes from measure theory to financial applications. It
mainly serves as a way for me to not forget what I’ve learned, but hopefully I can make
something worthwhile and helpful as well.
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Chapter 1

Measure Theory

1.1 Measure Spaces

1.1.1 Definition of σ-algebra

Definition 1.1.1 (σ-algebra). A σ-algebra on a set Ω is a collection F of subsets of Ω such
that:

(i) Ω ∈ F .

(ii) If A ∈ F , then Ac := Ω \A ∈ F .

(iii) If A1, A2, · · · ∈ F , then
⋃∞

n=1An ∈ F .

Example 1.1.2 (Coin tosses). Toss a coin twice, with heads probability p ∈ (0, 1). The sample
space is Ω = {ω1, ω2, ω3, ω4}, where

ω1 heads then heads,

ω2 heads then tails,

ω3 tails then heads,

ω4 tails then tails.

The full σ-algebra is the power set F = P(Ω). Equivalently,

F = σ({ω1}, {ω2}, {ω3}, {ω4}).

Example 1.1.3 (Borel σ-algebra on R). The Borel σ-algebra on R, denoted B(R), is the smallest
σ-algebra containing all open intervals (a, b) ⊆ R.

� By definition, (a, b) ∈ B(R).

� Its complement (−∞, a] ∪ [b,∞) is also in B(R).

� By closure under countable unions,
⋃∞

n=1(1/n, 1− 1/n) = (0, 1) is in B(R).

Definition 1.1.4 (Generated σ-algebra). For a collection C ⊆ 2Ω, the generated σ-algebra σ(C)
is the smallest σ-algebra containing C:

σ(C) =
⋂

{ G : G is a σ-algebra and C ⊆ G }.
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Definition 1.1.5 (Product σ-algebra). If (Ω1,F1) and (Ω2,F2) are measurable spaces, the
product σ-algebra on Ω1 × Ω2 is

F1 ⊗F2 := σ
(
{A×B : A ∈ F1, B ∈ F2}

)
.

Note

A σ-algebra is the collection of events we are allowed to talk about. It is closed under
complements and countable unions, so if an event is included, so are “not that event” and
“any countable combination of such events.”

1.1.2 Measures

Intuitively, a measure is a generalisation of length, area, or volume. Formally, it is a function
that assigns a nonnegative number to each set in a σ-algebra, in a way that is consistent with
disjoint unions.

Definition 1.1.6 (Measure). Let (Ω,F) be a measurable space. A function

µ : F → [0,∞]

is called a measure if

(i) µ(∅) = 0,

(ii) For any countable collection {Ai}∞i=1 ⊆ F of pairwise disjoint sets,

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

The triple (Ω,F , µ) is then called a measure space.

Definition 1.1.7 (σ-finite measure). A measure µ on (Ω,F) is σ-finite if

Ω =
∞⋃
n=1

An for sets An ∈ F with µ(An) < ∞.

Definition 1.1.8 (Complete measure space). A measure space (Ω,F , µ) is complete if whenever
N ∈ F with µ(N) = 0 and A ⊆ N , then A ∈ F .

Remark 1.1.9. Intuitively, a measure is a rule for assigning “sizes” or “weights” to sets. -
Condition (i) says the empty set has size zero. - Condition (ii) says that the measure is countably
additive: the size of a disjoint union is the sum of the sizes.

This captures the familiar properties of length, area, or volume, but in a far more general
setting.

Some important consequences:

Proposition 1.1.10 (Basic properties of measures). Let (Ω,F , µ) be a measure space. Then:

(i) Monotonicity: If A ⊆ B, then µ(A) ≤ µ(B).

3



(ii) Finite additivity: If A1, . . . , An are pairwise disjoint,

µ

(
n⋃

i=1

Ai

)
=

n∑
i=1

µ(Ai).

(iii) Continuity from below: If A1 ⊆ A2 ⊆ . . . , then

µ

( ∞⋃
n=1

An

)
= lim

n→∞
µ(An).

(iv) Continuity from above: If A1 ⊇ A2 ⊇ . . . and µ(A1) < ∞, then

µ

( ∞⋂
n=1

An

)
= lim

n→∞
µ(An).

Proof (sketch). (i) If A ⊆ B, then B = A ∪ (B \ A) disjointly, hence µ(B) = µ(A) + µ(B \
A) ≥ µ(A). (ii) Special case of countable additivity. (iii) Define B =

⋃∞
n=1An. The sets

Bn = An \ An−1 are disjoint, so µ(B) =
∑∞

n=1 µ(Bn) = limn→∞ µ(An). (iv) Apply (iii) to
complements Ac

n.

Thus, a measure behaves much like ordinary “volume” but is abstract enough to cover dis-
crete spaces (counting measure), continuous spaces (Lebesgue measure), and probability spaces
(where the measure of the whole space is 1).

Example 1.1.11 (Counting measure). On any set Ω, define µ(A) = |A| if A is finite, and
µ(A) = ∞ if A is infinite. This is a measure called the counting measure.

Example 1.1.12 (Dirac measure). For a fixed point ω0 ∈ Ω, define

δω0(A) =

{
1 if ω0 ∈ A,

0 if ω0 /∈ A.

This is a measure concentrated at a single point, called the Dirac measure.

Example 1.1.13 (Lebesgue measure). On (R,B(R)), the Lebesgue measure λ is defined so that
λ((a, b)) = b− a for all intervals a < b. It extends uniquely to all Borel sets and beyond.

Remark 1.1.14. For an interval (a, b) ⊂ R, the Lebesgue measure satisfies λ((a, b)) = b−a. This
coincides with the Riemann integral of the constant function 1:

λ((a, b)) =

∫ b

a
1 dx.

The Lebesgue measure can be viewed as the rigorous extension of this “length of an interval”
idea to much more complicated sets.

Note

A measure is a way of assigning “sizes” or “weights” to sets in a consistent way. It generalises
length, area, and volume, but can also count discrete points or assign probability mass. The
key idea is that disjoint sets add up.
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1.1.3 Probability Measures

A probability measure is simply a measure normalised so that the total mass is one.

Definition 1.1.15 (Probability measure). A measure P on (Ω,F) is called a probability measure
if P(Ω) = 1. Then (Ω,F ,P) is called a probability space.

Example 1.1.16 (Finite probability space). Let Ω = {ω1, ω2, . . . , ωn} and F = 2Ω. If pi ≥ 0
with

∑n
i=1 pi = 1, define

P({ωi}) = pi, i = 1, . . . , n.

This extends uniquely to a probability measure on all subsets of Ω.

Example 1.1.17 (Coin toss). Let Ω = {H,T}2 = {(H,H), (H,T ), (T,H), (T, T )}. For a fair
coin, assign P(ω) = 1

4 for each ω ∈ Ω. Then (Ω,F ,P) is a probability space with uniform
distribution.

Example 1.1.18 (Gaussian measure). On (R,B(R)), define for A ∈ B(R),

P(A) =
∫
A

1√
2π

e−x2/2 dx.

This probability measure corresponds to the standard normal distribution N(0, 1).

Proposition 1.1.19 (Basic properties of probability measures). Let (Ω,F ,P) be a probability
space. Then for all A,B ∈ F :

(i) Bounds: 0 ≤ P(A) ≤ 1.

(ii) Complement rule: P(Ac) = 1− P(A).

(iii) Monotonicity: If A ⊆ B, then P(A) ≤ P(B).

(iv) Finite additivity: If A ∩B = ∅, then

P(A ∪B) = P(A) + P(B).

(v) Union bound (Boole’s inequality):

P(A ∪B) ≤ P(A) + P(B).

More generally, for any finite or countable collection {Ai}i≥1,

P

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

P(Ai).

(vi) Inclusion–Exclusion (two sets):

P(A ∪B) = P(A) + P(B)− P(A ∩B).

Proof (sketch). (i) Since ∅ ⊆ A ⊆ Ω and P(∅) = 0, P(Ω) = 1, monotonicity gives 0 ≤ P(A) ≤ 1.
(ii) Follows because Ω = A ∪Ac disjointly. (iii) Same as the monotonicity of general measures.
(iv) From countable additivity. (v) The sets A and B \ A are disjoint, so P(A ∪ B) = P(A) +
P(B \A) ≤ P(A) + P(B). (vi) Standard rearrangement using A ∪B = (A \B) ∪B.

Note

A probability measure is just a measure with P(Ω) = 1. This ensures the whole sample
space has probability 1, and all other events get a value between 0 and 1. Every probability
measure is σ-finite, since Ω itself has finite measure. This forms the rigorous foundation for
Kolmogorov’s axioms of probability.
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1.1.4 Measurable functions

Note

So far, measures are defined only on sets. To assign probabilities to events involving a
function X : Ω → R (such as {X ≤ 1}), we need to guarantee that such events belong to
F . This requirement is called measurability, and it allows us to treat random variables as
functions compatible with the underlying probability structure.

Definition 1.1.20 (Measurable function). Let (Ω,F) be a measurable space and (R,B(R)) the
real line with its Borel σ-algebra. A function X : Ω → R is called F-measurable if

X−1(B) := {ω ∈ Ω : X(ω) ∈ B} ∈ F , ∀B ∈ B(R).

Proposition 1.1.21 (Practical criterion for measurability). A function X : Ω → R is measur-
able if and only if

{ω ∈ Ω : X(ω) ≤ a } ∈ F for all a ∈ R.
Example 1.1.22 (Discrete random variable). Let Ω = {HH,HT, TH, TT}, and define X :
Ω → R as the number of heads. Then {X = 1} = {HT, TH} ∈ F . All preimages of sets of the
form {0}, {1}, {2} are measurable, hence X is measurable.

Example 1.1.23 (Identity function). Let Ω = R, F = B(R), and X(ω) = ω. For any a ∈ R,

{ω : X(ω) ≤ a} = (−∞, a] ∈ B(R),

so X is measurable.

Remark 1.1.24 (Random variables). In probability theory, F -measurable functions are called
random variables. Thus, a random variable is simply a measurable mapping from the sample
space into the real line.

Remark 1.1.25 (Measurability with respect to a smaller σ-algebra). If G ⊆ F , we say X is
G-measurable if X−1(B) ∈ G for all Borel sets B. Intuitively, measurability depends on the
“information” available. For example, if G = {∅,Ω}, the only G-measurable functions are
constants.

Remark 1.1.26 (Connection to filtrations). If (Ft)t≥0 is a filtration, then Xt is Ft-measurable if
its value at time t is determined by the information available up to t. This notion is central for
defining adapted processes later.

Proposition 1.1.27 (Closure properties). If X,Y are measurable functions and f : R → R is
Borel-measurable, then

(i) X + Y , X − Y , XY , and max(X,Y ) are measurable.

(ii) f ◦X is measurable.

(iii) If (Xn) is a sequence of measurable functions, then supnXn, infnXn, lim supnXn, and
lim infnXn are measurable.

Definition 1.1.28 (Equality almost everywhere). Given a measure space (Ω,F , µ), we say
X = Y almost everywhere (a.e.) if µ({ω : X(ω) ̸= Y (ω)}) = 0.

Remark 1.1.29. In probability theory, random variables that are equal a.e. are considered equiv-
alent, since they induce the same distributions and expectations. Most results hold “a.e.” rather
than pointwise.

Note

Informally, a function is measurable if every event of the form {X ∈ B} has a well-defined
probability, i.e. its preimage lies in the σ-algebra.
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1.2 Integration

1.2.1 Lebesgue integral

The Riemann integral partitions the domain (the x-axis), while the Lebesgue integral partitions
the range (the y-axis). This shift makes the Lebesgue integral compatible with measure theory,
allowing us to integrate functions with many discontinuities or defined on abstract spaces.

Note

Recall: the Lebesgue measure λ on R extends the idea of length, with λ((a, b)) = b−a. This
measure lets us assign “sizes” to complicated sets, forming the foundation of the Lebesgue
integral.

Step 1. Simple functions. If s =
∑n

i=1 ai1Ai with ai ≥ 0 and Ai measurable, define∫
s dµ :=

n∑
i=1

ai µ(Ai).

Step 2. Nonnegative functions. For a measurable f ≥ 0, define∫
f dµ := sup{

∫
s dµ : 0 ≤ s ≤ f, s simple}.

Step 3. General functions. If f = f+ − f− with
∫
f+ dµ < ∞ and

∫
f− dµ < ∞, set∫

f dµ :=

∫
f+ dµ−

∫
f− dµ.

Example 1.2.1 (Riemann vs Lebesgue: f(x) = x2 on [0, 1]). We compare the two integration
approaches:

� Riemann: Subdivide [0, 1] into n equal subintervals of width ∆x = 1
n . The right-endpoint

Riemann sum is

Sn =
n∑

k=1

(
k

n

)2

· 1
n
.

Using
∑n

k=1 k
2 = n(n+1)(2n+1)

6 , one finds

lim
n→∞

Sn =
1

3
.

� Lebesgue: Slice the range instead. For y ∈ [0, 1],

Ey = {x ∈ [0, 1] : x2 > y} = (
√
y, 1],

with measure λ(Ey) = 1−√
y. By the layer-cake representation,∫ 1

0
x2 dλ =

∫ 1

0
(1−√

y) dy =
1

3
.

7



Both methods give the same result, but the perspective differs: Riemann integration partitions
the domain into vertical slices, while Lebesgue integration partitions the range into horizontal
slices.

Example 1.2.2 (Why Lebesgue is stronger). Let f = 1Q∩(0,1).

� Riemann: every interval contains rationals and irrationals, so upper sums = 1 and lower
sums = 0. Hence not Riemann-integrable.

� Lebesgue: rationals have measure zero, so
∫
f dλ = 0.

Proposition 1.2.3 (Basic properties). If f, g are measurable and integrable, and α ≥ 0:

(i) Linearity:
∫
(f + g) dµ =

∫
f dµ+

∫
g dµ,

(ii) Positive homogeneity:
∫
αf dµ = α

∫
f dµ,

(iii) Monotonicity: f ≤ g =⇒
∫
f ≤

∫
g,

(iv) Agreement with Riemann when f is Riemann-integrable.

Note

Riemann: slice vertically. Lebesgue: slice horizontally. This distinction allows us to prove
the convergence theorems that follow: Monotone Convergence, Fatou’s Lemma, and the
Dominated Convergence Theorem.

Note

Supremum and Infimum. For a set A ⊆ R: - supA = least upper bound, - inf A =
greatest lower bound.
Limsup and Liminf. For a sequence (an):

lim sup
n→∞

an = lim
n→∞

sup
k≥n

ak, lim inf
n→∞

an = lim
n→∞

inf
k≥n

ak.

If lim sup = lim inf, the usual limit exists. These tools are essential for the convergence
theorems that follow.

1.2.2 Monotone Convergence Theorem

Theorem 1.2.4 (Monotone Convergence Theorem (MCT)). Let (Ω,F , µ) be a measure space
and let (Xn)n≥1 be an increasing sequence of nonnegative measurable functions, i.e. 0 ≤ X1 ≤
X2 ≤ · · · and Xn(ω) ↑ X(ω) for µ-a.e. ω ∈ Ω, for some measurable X : Ω → [0,∞]. Then

lim
n→∞

∫
Xn dµ =

∫
X dµ,

with the understanding that both sides may be +∞.

Proof. Since Xn ≤ X for all n, monotonicity of the integral gives
∫
Xn dµ ≤

∫
X dµ, hence

lim supn
∫
Xn dµ ≤

∫
X dµ.

For the reverse inequality, let s be any simple function with 0 ≤ s ≤ X. Write s =
∑m

j=1 aj1Aj

with aj ≥ 0 and Aj ∈ F disjoint. Fix j. On Aj we have aj ≤ X. Since Xn ↑ X a.e., the sets

Aj,n := {ω ∈ Aj : Xn(ω) ≥ aj}
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increase to Aj (i.e. Aj,n ↑ Aj), so by continuity from below of µ, µ(Aj,n) ↑ µ(Aj).

For each n, ∫
Xn dµ ≥

m∑
j=1

aj µ(Aj,n).

Taking n → ∞ and using µ(Aj,n) ↑ µ(Aj),

lim inf
n→∞

∫
Xn dµ ≥

m∑
j=1

aj µ(Aj) =

∫
s dµ.

Since this holds for every simple s ≤ X, taking the supremum over all such s yields lim infn
∫
Xn dµ ≥∫

X dµ by the definition of the Lebesgue integral of X. Combining the two inequalities gives
limn

∫
Xn dµ =

∫
X dµ.

Example 1.2.5 (Indicator functions filling up the interval). Let Ω = [0, 1] with Lebesgue
measure λ, and define Xn(ω) = 1[0, 1−1/n](ω). Then 0 ≤ X1 ≤ X2 ≤ · · · and Xn(ω) ↑ 1 for
λ-a.e. ω ∈ [0, 1]. Hence, by MCT,

lim
n→∞

∫ 1

0
Xn(ω) dλ(ω) =

∫ 1

0
1 dλ = 1.

Example 1.2.6 (Truncation of a nonnegative random variable). Let (Ω,F ,P) be a probability
space and X : Ω → [0,∞] be measurable. Define the increasing sequence Xn = min(X,n). Then
Xn ↑ X P-a.s., so by MCT

lim
n→∞

E[Xn] = E[X].

This holds whether E[X] is finite or infinite. In particular, if E[X] < ∞ it shows that expecta-
tions can be computed as limits of expectations of the bounded truncations Xn.

Note

MCT justifies interchanging limit and integral for monotone increasing nonnegative se-
quences: ∫

lim
n→∞

Xn dµ = lim
n→∞

∫
Xn dµ.

1.2.3 Fatou’s Lemma

Lemma 1.2.7 (Fatou’s Lemma). Let (Xn)n≥1 be a sequence of nonnegative measurable random
variables on a measure space (Ω,F , µ). Then

E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E[Xn].

Proof (sketch). Define
Yk(ω) := inf

n≥k
Xn(ω), k = 1, 2, . . .

so that Y1 ≤ Y2 ≤ . . . and
lim
k→∞

Yk(ω) = lim inf
n→∞

Xn(ω).

By the Monotone Convergence Theorem,

E
[
lim inf
n→∞

Xn

]
= lim

k→∞
E[Yk].
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But Yk ≤ Xn for all n ≥ k, so
E[Yk] ≤ inf

n≥k
E[Xn].

Taking limits gives
lim
k→∞

E[Yk] ≤ lim
k→∞

inf
n≥k

E[Xn] = lim inf
n→∞

E[Xn].

Corollary 1.2.8 (Fatou with integrable bounds). Let (Xn) be random variables.

(i) If Xn ≥ Y P-a.s. for all n, where Y ∈ L1, then

E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E[Xn].

(ii) If Xn ≤ Y P-a.s. for all n, where Y ∈ L1, then

E
[
lim sup
n→∞

Xn

]
≥ lim sup

n→∞
E[Xn].

(This follows by applying Fatou’s Lemma to −Xn.)

Note

Informal explanation: Fatou’s Lemma says that expectations “preserve inequalities”
when passing to limits. - For the liminf version, the expectation of the pointwise liminf is
at most the liminf of expectations. - For the limsup version, the expectation of the pointwise
limsup is at least the limsup of expectations.
Intuitively, expectations cannot “overshoot” when you pass to limits. Fatou’s Lemma is
weaker than the Dominated Convergence Theorem, but it requires fewer assumptions. It is
often used as a building block for convergence theorems.

1.2.4 Dominated Convergence Theorem

Theorem 1.2.9 (Dominated Convergence Theorem (DCT)). Let (Xn) be a sequence of random
variables that converges to a random variable X P-a.s. Suppose there exists an integrable random
variable Y ∈ L1 such that |Xn| ≤ Y P-a.s. for all n ≥ 1. Then

lim
n→∞

E[Xn] = E[X].

Proof. Since |Xn| ≤ Y a.s. and Xn → X a.s., by continuity of the absolute value we have
|X| ≤ Y a.s., hence X ∈ L1 and E[|X|] ≤ E[Y ] < ∞.

Consider the nonnegative random variables

Un := Y +Xn and Vn := Y −Xn,

which converge a.s. to U := Y +X and V := Y −X, respectively. By Fatou’s lemma applied
to (Un),

E[X] ≤ lim inf
n→∞

E[Xn]. (1)

Similarly, applying Fatou’s lemma to (Vn),

E[X] ≥ lim sup
n→∞

E[Xn]. (2)
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Combining (1) and (2) gives

lim sup
n→∞

E[Xn] ≤ E[X] ≤ lim inf
n→∞

E[Xn],

so the limit limn→∞ E[Xn] exists and equals E[X].

Example 1.2.10 (Necessity of domination). Let Ω = [0, 1] with Lebesgue measure λ, and
define

Xn(x) = n1(0,1/n)(x).

Then Xn(x) → 0 for λ-a.e. x, but∫ 1

0
Xn(x) dx = 1 for all n.

So lim
∫
Xn ̸=

∫
limXn. Here there is no integrable dominating function Y , so the assumptions

of DCT fail. This shows why domination is essential.

Note

The DCT justifies exchanging limit and expectation when the sequence is uniformly domi-
nated by an L1 random variable. It strengthens Fatou’s Lemma by giving equality instead
of just inequality, at the cost of requiring a domination condition.

1.2.5 Tonelli’s and Fubini’s theorems

For these theorems we state them without proof and illustrate their use.

Theorem 1.2.11 (Tonelli’s theorem). Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be σ-finite measure
spaces. If f : Ω1 × Ω2 → [0,∞] is measurable, then∫

Ω1×Ω2

f d(µ1 ⊗ µ2) =

∫
Ω1

(∫
Ω2

f(x, y) dµ2(y)

)
dµ1(x) =

∫
Ω2

(∫
Ω1

f(x, y) dµ1(x)

)
dµ2(y).

Example 1.2.12 (Tonelli: double integral of a nonnegative function). Let f(x, y) = e−x−y on
(0,∞)× (0,∞) with Lebesgue measure. Then∫ ∞

0

∫ ∞

0
e−(x+y) dy dx =

∫ ∞

0
e−x

(∫ ∞

0
e−y dy

)
dx =

∫ ∞

0
e−x(1) dx = 1.

Example 1.2.13 (Tonelli: indicator function). Let f(x, y) = 1{x+y≤1} on [0, 1]2. Then∫ 1

0

∫ 1

0
1{x+y≤1} dy dx =

∫ 1

0

∫ 1−x

0
1 dy dx =

∫ 1

0
(1− x) dx = 1

2 .

Theorem 1.2.14 (Fubini’s theorem). Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be σ-finite measure
spaces. If f : Ω1 × Ω2 → R is integrable, i.e.∫

Ω1×Ω2

|f | d(µ1 ⊗ µ2) < ∞,

then the iterated integrals exist, and∫
Ω1×Ω2

f d(µ1 ⊗ µ2) =

∫
Ω1

(∫
Ω2

f(x, y) dµ2(y)

)
dµ1(x) =

∫
Ω2

(∫
Ω1

f(x, y) dµ1(x)

)
dµ2(y).
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Example 1.2.15 (Fubini: alternating sign function). Let f(x, y) = sin(x) cos(y) on [0, π]×[0, π].
Then ∫ π

0

∫ π

0
sin(x) cos(y) dy dx =

∫ π

0
sin(x)

(∫ π

0
cos(y) dy

)
dx = 0.

The same result holds if we swap the order.

Example 1.2.16 (Fubini: absolute integrability required). Let f(x, y) = sin(xy)
xy on (0,∞) ×

(0,∞). Then f is integrable, and∫ ∞

0

∫ ∞

0

sin(xy)

xy
dy dx =

π

2
.

This uses the classical result
∫∞
0

sin(u)
u du = π

2 . Here Fubini ensures we can swap the order of
integration safely.

Example 1.2.17 (Failure without absolute integrability). Consider f(x, y) = xy
(x2+y2)2

on

(0,∞)2. Both iterated integrals exist, but they are not equal, so the double integral is un-
defined. This illustrates why absolute integrability is required for Fubini’s theorem.

Note

Tonelli vs. Fubini. - Tonelli applies to nonnegative measurable functions, even if the inte-
gral is infinite. - Fubini applies to absolutely integrable functions, and guarantees equality
of iterated and double integrals.
Why it matters in stochastic calculus. These theorems justify exchanging the order of
integration in situations like: - computing expectations of stochastic integrals (E

∫
f dW =∫

E[f ] dW ), - handling double integrals in covariance and quadratic variation computations,
- and working with stochastic Fubini theorems when interchanging stochastic and Lebesgue
integrals. They are essential whenever integrals over time and probability are combined.

1.2.6 Expectation as a Lebesgue integral

Definition 1.2.18 (Expectation). Let (Ω,F ,P) be a probability space and X : Ω → R an
F-measurable random variable. If X is integrable, i.e.

∫
Ω |X| dP < ∞, the expectation of X is

E[X] :=

∫
Ω
X(ω) dP(ω).

Equivalently, if µ = L(X) denotes the law (distribution) of X, then

E[X] =

∫
R
x dµ(x).

Proposition 1.2.19 (Basic properties of expectation). For integrable random variables X,Y
and constants a, b ∈ R:

(i) Linearity: E[aX + bY ] = aE[X] + bE[Y ].

(ii) Monotonicity: If X ≤ Y a.s., then E[X] ≤ E[Y ].

(iii) Monotone Convergence: If Xn ↑ X, then E[Xn] ↑ E[X] (by MCT).

(iv) Dominated Convergence: If Xn → X a.s. and |Xn| ≤ Y ∈ L1, then E[Xn] → E[X]
(by DCT).
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Example 1.2.20 (Discrete random variable). Let Ω = {ω1, ω2, . . . } with P({ωi}) = pi, and
X(ωi) = xi. Then

E[X] =
∑
i

xipi.

Thus the expectation reduces to a weighted average of the values xi.

Example 1.2.21 (Continuous random variable). LetX have density f with respect to Lebesgue
measure λ on R. Then for any integrable X,

E[X] =

∫
R
xf(x) dx.

For example, if X ∼ Uniform[0, 1], then E[X] =
∫ 1
0 x dx = 1

2 .

Example 1.2.22 (Mixed random variable). Suppose X is 0 with probability 0.5, and otherwise
uniformly distributed on [0, 1]. Then L(X) is the mixture measure

L(X) = 0.5 δ0 + 0.5λ|[0,1],

and

E[X] = 0.5 · 0 + 0.5

∫ 1

0
x dx = 1

4 .

This shows how the Lebesgue integral unifies discrete, continuous, and mixed cases.

Note

The expectation is simply the Lebesgue integral with respect to the probability measure. -
In the discrete case, the Lebesgue integral becomes a countable sum of values weighted by
probabilities. - In the continuous case, it becomes an ordinary integral against the density.
- In mixed cases, it naturally combines both.
This unified viewpoint is crucial: there is no need for separate definitions of expectation
depending on whether a random variable is discrete or continuous. Everything follows from
the Lebesgue integral.

Note

The law (or distribution) of a random variable X : Ω → R is the probability measure L(X)
on (R,B(R)) defined by

L(X)(B) = P(X ∈ B), B ∈ B(R).

It tells us the probability of X falling in any Borel set of R.
A common way to represent the law is via the cumulative distribution function (CDF):

FX(x) := P(X ≤ x) = L(X)((−∞, x]).

Examples:

� If X is discrete with P(X = 0) = 0.3, P(X = 1) = 0.7, then L(X) is the probability
measure assigning mass 0.3 to {0} and 0.7 to {1}.

� If X is standard normal, then L(X)(A) =
∫
A

1√
2π
e−x2/2 dx, and the CDF is FX(x) =∫ x

−∞
1√
2π
e−t2/2 dt.

In short: the law is the full probability measure; the CDF is one way of describing it.
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1.3 Probability Spaces

1.3.1 (Ω,F ,P)

Definition 1.3.1 (Probability space). A probability space is a triple (Ω,F ,P), where:

� Ω is the sample space, the set of all possible outcomes,

� F is a σ-algebra of subsets of Ω, called events,

� P : F → [0, 1] is a probability measure with P(Ω) = 1.

Note

This framework, due to Kolmogorov, is the foundation of modern probability theory. It is
simply a measure space (Ω,F , µ) with total mass normalised to 1. This structure allows us
to rigorously define random variables, expectations, and stochastic processes.

Example 1.3.2 (Coin toss). Let Ω = {H,T}, F = 2Ω, and P({H}) = P({T}) = 1
2 . Then

(Ω,F ,P) is a simple probability space for a fair coin.

Example 1.3.3 (Gaussian distribution). Let Ω = R, F = B(R), and

P(A) =
∫
A

1√
2π

e−x2/2 dx, A ∈ B(R).

This defines a probability space for a standard normal random variable.

1.3.2 Random variables

Definition 1.3.4 (Random variable). A random variable is a measurable function

X : (Ω,F) → (R,B(R)),

that is,
{ω ∈ Ω : X(ω) ≤ a} = X−1((−∞, a]) ∈ F , ∀a ∈ R.

Note

A random variable is not “random” in itself; it is a deterministic mapping on Ω. Randomness
arises from the fact that the outcome ω is unknown. Measurability ensures that events of
the form {X ≤ a} are legitimate events in F .

Example 1.3.5 (Discrete random variable). Toss two coins: Ω = {HH,HT, TH, TT}, define
X(ω) = number of heads. Then X : Ω → {0, 1, 2} is measurable, and P(X = 1) = 1

2 .

Example 1.3.6 (Continuous random variable). Let Ω = [0, 1], F = B([0, 1]), and P = Lebesgue
measure on [0, 1]. Define X(ω) = ω. Then X is measurable and has the Uniform[0,1] distribu-
tion.

Remark 1.3.7. If E[|X|] < ∞, we say that X is an integrable random variable. This distinction
is important when working with expectations.
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1.3.3 Distribution (Law)

Definition 1.3.8 (Law of a random variable). The law (or distribution) of a random variable
X is the pushforward measure L(X) on (R,B(R)) defined by

L(X)(B) := P(X ∈ B), B ∈ B(R).

In other words, the law describes the probabilities of subsets of R induced by X.

Note

The law is a full probability measure on R. Different representations include:

� CDF: FX(x) = P(X ≤ x) = L(X)((−∞, x]),

� PMF (discrete case): P(X = xi) for atoms xi,

� PDF (continuous case): a density f such that L(X)(A) =
∫
A f(x) dx.

All of these are just different ways of describing the same measure L(X).

Example 1.3.9 (Gaussian distribution). If X ∼ N(0, 1), then

L(X)(A) =

∫
A

1√
2π

e−x2/2 dx, A ∈ B(R).

The CDF is

FX(x) =

∫ x

−∞

1√
2π

e−t2/2 dt.

Example 1.3.10 (Discrete law). If X is the outcome of a fair die, then

L(X)({k}) = 1
6 , k = 1, . . . , 6.

Here the law is described by a probability mass function.

1.3.4 Independence

Definition 1.3.11 (Independence of events). Two events A,B ∈ F are independent if

P(A ∩B) = P(A)P(B).

A family {Ai} is independent if for any finite subcollection,

P

 n⋂
j=1

Aij

 =

n∏
j=1

P(Aij ).

Definition 1.3.12 (Independence of random variables). Random variables X,Y are indepen-
dent if the σ-algebras they generate are independent. Equivalently,

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B), ∀A,B ∈ B(R),

where σ(X) = {X−1(B) : B ∈ B(R)}.
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Remark 1.3.13. More generally, a family {Xi : i ∈ I} of random variables is independent if the
σ-algebras σ(Xi) are mutually independent, i.e.

P

 n⋂
j=1

{Xij ∈ Bj}

 =

n∏
j=1

P(Xij ∈ Bj),

for all finite choices i1, . . . , in and Borel sets B1, . . . , Bn.

Example 1.3.14 (Independent coin tosses). Let X1, X2 be outcomes of two independent fair
coins (1 for head, 0 for tail). Then

P(X1 = 1, X2 = 1) = 1
4 = 1

2 · 1
2 .

Example 1.3.15 (Independent Gaussians). If X,Y ∼ N(0, 1) are independent, then the joint
law is the product measure:

L(X,Y )(A×B) = L(X)(A)L(Y )(B),

so the joint density factorises as

fX,Y (x, y) = fX(x)fY (y) =
1
2πe

−(x2+y2)/2.

Note

Independence means that knowing one event (or random variable) provides no information
about the other. It is stronger than uncorrelatedness: if X ∼ Uniform[−1, 1] and Y = X2,
then E[XY ] = E[X]E[Y ] = 0, so X,Y are uncorrelated but not independent.

1.3.5 Markov and Chebyshev inequalities

Theorem 1.3.16 (Markov’s inequality). Let X ≥ 0 be a random variable with E[X] < ∞.
Then

P(X ≥ a) ≤ E[X]

a
, ∀a > 0.

Proof (sketch). For X ≥ 0,

E[X] ≥ E[X · 1{X≥a} ] ≥ a · P(X ≥ a).

Dividing by a > 0 gives the result.

Theorem 1.3.17 (Chebyshev’s inequality). Let X be a random variable with mean µ and
variance σ2 < ∞. Then

P(|X − µ| ≥ ε) ≤ σ2

ε2
, ∀ε > 0.

Proof (sketch). Apply Markov’s inequality to the nonnegative random variable (X − µ)2:

P(|X − µ| ≥ ε) = P
(
(X − µ)2 ≥ ε2

)
≤ E[(X − µ)2]

ε2
=

σ2

ε2
.
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Note

� Markov provides bounds using only the expectation.

� Chebyshev follows directly from Markov applied to (X − µ)2.

� These inequalities control the probability of large deviations and are key in proving
the Weak Law of Large Numbers and in analysing convergence of stochastic processes.

Example 1.3.18 (Application of Markov). If X ≥ 0 with E[X] = 10, then P(X ≥ 100) ≤ 0.1.
Even without knowing the distribution, we obtain a useful bound.

Example 1.3.19 (Application of Chebyshev). If E[X] = 0 and Var(X) = 1, then

P(|X| ≥ 5) ≤ 1

25
= 0.04.

This shows X is very unlikely to deviate far from the mean.

1.4 Conditional Expectation

1.4.1 Definition via the Radon-Nikodym theorem

Motivation. Suppose we want to “average” a random variable X given partial information,
represented by a sub-σ-algebra G ⊆ F . We want a G-measurable random variable Y that acts
like X when tested against G: ∫

G
Y dP =

∫
G
X dP, ∀G ∈ G.

The question: does such a Y exist, and is it unique? This is answered by the Radon–Nikodym
theorem.

Theorem 1.4.1 (Conditional expectation via Radon–Nikodym). Let (Ω,F ,P) be a probability
space, G ⊆ F a sub-σ-algebra, and X ∈ L1(Ω,F ,P). Then there exists a G-measurable random
variable Y , unique up to P-a.s. equality, such that∫

G
Y dP =

∫
G
X dP, ∀G ∈ G.

We call Y the conditional expectation of X given G, written

Y = E[X | G].

Proof outline. Define a set function ν on G by

ν(G) :=

∫
G
X dP, G ∈ G.

- ν is a finite signed measure on (Ω,G). - Moreover, ν is absolutely continuous with respect to
P restricted to G (since P(G) = 0 =⇒ ν(G) = 0). - By the Radon–Nikodym theorem, there
exists a G-measurable function Y such that

ν(G) =

∫
G
Y dP, ∀G ∈ G.

This Y is unique P-a.s. and is exactly E[X | G].
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Example 1.4.2 (Trivial σ-algebra). If G = {∅,Ω}, then the only G-measurable random variables
are constants. Thus E[X | G] = E[X], the unconditional expectation.

Example 1.4.3 (Full σ-algebra). If G = F , thenX itself is G-measurable. Hence E[X | F ] = X.

Example 1.4.4 (Discrete case: finite partition). Suppose G = σ(A1, . . . , An), a finite partition
of Ω with P(Ai) > 0. Then

E[X | G] =
n∑

i=1

∫
Ai

X dP
P(Ai)

1Ai ,

i.e. on each Ai, the conditional expectation is the average of X restricted to Ai.

Example 1.4.5 (Conditional expectation as regression). Let X,Y be square-integrable. If
G = σ(Y ), then E[X | G] is the L2-projection of X onto functions of Y , i.e. the unique G-
measurable random variable Z minimising E[(X − Z)2]. For instance, if (X,Y ) are jointly
Gaussian with means µX , µY , variances σ

2
X , σ2

Y , and correlation ρ, then

E[X | Y ] = µX + ρ
σX
σY

(Y − µY ).

Note

The Radon–Nikodym theorem tells us that conditional expectation is just the Radon–
Nikodym derivative of one measure with respect to another. Formally, ν(G) =

∫
GX dP

is a measure on G, absolutely continuous with respect to P|G . The conditional expectation
E[X | G] is its Radon–Nikodym derivative. Intuitively, it is the “best guess” of X given the
information encoded in G.

1.4.2 Basic properties

Proposition 1.4.6 (Properties of conditional expectation). Let (Ω,F ,P) be a probability space,
G ⊆ F a sub-σ-algebra, and let X,Y ∈ L1. Then:

1. Linearity: For a, b ∈ R,

E[aX + bY | G] = aE[X | G] + bE[Y | G].

2. Monotonicity: If X ≤ Y a.s., then

E[X | G] ≤ E[Y | G] a.s.

3. Taking out what is known: If Z is bounded and G-measurable (so that XZ ∈ L1), then

E[XZ | G] = Z E[X | G].

4. Tower property: If H ⊆ G ⊆ F , then

E[E[X | G] |H] = E[X | H].

5. Law of total expectation:
E[E[X | G]] = E[X].

Proof sketch. All properties follow directly from the defining identity∫
G
E[X | G] dP =

∫
G
X dP, ∀G ∈ G.
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� (i) Apply the identity to aX + bY .

� (ii) If X ≤ Y , then
∫
GX ≤

∫
G Y for all G ∈ G, so the same inequality holds for their

conditionals.

� (iii) If Z is G-measurable, pull Z out of the inner integral on each G, giving the result.

� (iv) Both sides are H-measurable and agree on all H ∈ H, hence must coincide.

� (v) Apply (iv) with H trivial.

Example 1.4.7 (Finite partition). Let G = σ(A1, . . . , An) with P(Ai) > 0. Then

E[X | G] =
n∑

i=1

1

P(Ai)

∫
Ai

X dP 1Ai .

On each atom Ai, the conditional expectation is just the average of X over Ai.

Example 1.4.8 (Tower property in action). Suppose X is the outcome of a fair die roll. - Let
G = σ({odd, even}) (parity). - Let H = {∅,Ω} (trivial). Then E[X | G] = 3 on odd outcomes
and 4 on even outcomes. Taking expectation again w.r.t. H gives 3.5, which is just E[X].

Example 1.4.9 (Independence and “taking out what is known”). If X,Y are independent and
integrable, then

E[X | Y ] = E[X].

Indeed, functions of Y are σ(Y )-measurable, and independence makes E[XZ | Y ] = E[X] · Z
for such Z.

Note

These properties make conditional expectation behave like an “ordinary” expectation, but
relative to the information in G. - Linearity and monotonicity mirror those of the usual
expectation. - “Taking out what is known” says that G-measurable information can be
treated like a constant. - The tower property expresses consistency when conditioning step
by step. - The law of total expectation shows that conditional expectation is a refinement
of expectation.
These rules form the algebraic toolkit for manipulating conditional expectations in proba-
bility and stochastic calculus.

1.4.3 Conditional probability

Definition 1.4.10 (Conditional probability via conditional expectation). Let (Ω,F ,P) be a
probability space, G ⊆ F , and A ∈ F . The conditional probability of A given G is the G-
measurable random variable

P(A | G) := E[1A | G ],

where 1A is the indicator of A. It is characterised by∫
G
P(A | G) dP = P(A ∩G), ∀G ∈ G.
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Example 1.4.11 (Trivial σ-algebra). If G = {∅,Ω}, then

P(A | G) = P(A).

Here the conditional probability reduces to the unconditional one.

Example 1.4.12 (Full σ-algebra). If G = F , then

P(A | G) = 1A.

Given complete information, the conditional probability is either 0 or 1 depending on whether
A occurs.

Example 1.4.13 (Discrete case: die roll). Let X be the outcome of a fair die and A = {X = 6}.
Take G = σ({odd, even}). Then

P(A | G)(ω) =

{
0 if X(ω) is odd,

1/3 if X(ω) is even.

Thus P(A|G) is a random variable taking different constant values depending on the parity of
the outcome.

Example 1.4.14 (Bayes’ rule from conditional expectation). Suppose A,B ∈ F with P(B) > 0
and let G = σ(B). Then

P(A | G) = P(A ∩B)

P(B)
1B +

P(A ∩Bc)

P(Bc)
1Bc .

Restricting to B gives the familiar formula

P(A | B) =
P(A ∩B)

P(B)
.

Note

Conditional probability is just conditional expectation of indicators:

P(A|G) = E[1A|G].

- With no information (G trivial), we recover the usual probability. - With full information
(G = F), the conditional probability is 0 or 1. - With partial information, it becomes a
random variable reflecting what is known.
In stochastic processes we often write P(A|Ft): the probability of A given the information
available up to time t.

1.4.4 Jensen’s inequality

Theorem 1.4.15 (Conditional Jensen’s inequality). Let (Ω,F ,P) be a probability space, G ⊆ F ,
and let X ∈ L1. If φ : R → R is convex with X,φ(X) ∈ L1, then

φ(E[X | G]) ≤ E[φ(X) | G] a.s.

Note

If G is the trivial σ-algebra, then E[X | G] = E[X], so the theorem reduces to the classical
inequality

φ(E[X]) ≤ E[φ(X)].
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Proof sketch. For convex φ, one can find an affine function a+ bx (supporting hyperplane) such
that

φ(x) ≥ a+ bx, ∀x ∈ R.

Taking conditional expectations gives

E[φ(X) | G] ≥ a+ bE[X | G].

Since this holds for all supporting affine functions of φ, we conclude

E[φ(X) | G] ≥ φ
(
E[X | G]

)
.

Example 1.4.16 (Quadratic convex function). Let X ∈ L2 and φ(x) = x2. Then(
E[X | G]

)2 ≤ E[X2 | G],

which reduces in the trivial-σ-algebra case to the variance inequality (E[X])2 ≤ E[X2].

Example 1.4.17 (Martingale to submartingale). If (Mt) is a martingale and φ is convex, then
by conditional Jensen,

E[φ(Mt) | Fs] ≥ φ(E[Mt | Fs]) = φ(Ms), s ≤ t.

Hence (φ(Mt)) is a submartingale — a fundamental result in martingale theory.

Note

Jensen’s inequality shows that convex functions “push expectations upwards”. The condi-
tional version says the same holds when averaging relative to partial information G. This
is central in stochastic processes: convex transforms of martingales are submartingales,
underpinning many inequalities and convergence results in stochastic calculus.

1.5 Convergence Concepts

1.5.1 P-almost surely convergence

Definition 1.5.1 (P-almost sure convergence). Let (Xn)n≥1 be random variables on (Ω,F ,P)
and X another random variable. We say that Xn converges to X P-almost surely (or a.s.) if

P
(
{ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)}

)
= 1.

We write
Xn

a.s.−−→ X.

Example 1.5.2 (Strong Law of Large Numbers). If (Xi) are i.i.d. with E[X1] < ∞, then

1

n

n∑
i=1

Xi
a.s.−−→ E[X1].

This is almost sure convergence: the sample average converges pointwise for almost every out-
come.
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Example 1.5.3 (Failure only on a null set). Let Ω = [0, 1] with Lebesgue measure and define
Xn(ω) = 1[0,1/n](ω). Then for ω > 0, eventually Xn(ω) = 0, so Xn(ω) → 0. At ω = 0, we have
Xn(0) = 1 for all n, so convergence fails. But {0} has measure zero, hence Xn → 0 a.s.

Note

Almost sure convergence is the strongest of the common convergence notions: it requires
Xn(ω) → X(ω) for “almost every” ω, except possibly on a set of probability zero.
- It is pointwise convergence, but with tolerance for ignoring null sets. - It implies conver-
gence in probability, but not conversely:

Xn
a.s.−−→ X ⇒ Xn

P−→ X.

- Many limit theorems (e.g. the Strong Law of Large Numbers) are formulated in terms of
almost sure convergence.

1.5.2 Convergence in probability

Definition 1.5.4 (Convergence in probability). Let (Xn) and X be random variables on
(Ω,F ,P). We say that Xn converges to X in probability if

∀ε > 0, lim
n→∞

P(|Xn −X| > ε) = 0.

We write
Xn

P−→ X.

Example 1.5.5 (Vanishing noise). Let Xn = X + ξn where ξn ∼ Uniform(−1/n, 1/n) are

independent noise terms. Then Xn
P−→ X, since deviations larger than ε become impossible as

n → ∞. However, almost sure convergence need not hold.

Example 1.5.6 (Sample averages: Weak Law of Large Numbers). If (Xi) are i.i.d. with E[X1] =
µ < ∞, then

1

n

n∑
i=1

Xi
P−→ µ.

This is the Weak Law of Large Numbers.

Note

Convergence in probability requires that the probability of large deviations goes to zero.
- It is weaker than almost sure convergence:

Xn
a.s.−−→ X ⇒ Xn

P−→ X,

but not conversely.
- It is stronger than weak convergence:

Xn
P−→ X ⇒ Xn

d−→ X.

- In practice, convergence in probability is the most useful notion in statistics, because it
captures convergence of estimators to the true parameter.
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1.5.3 Lp convergence

Definition 1.5.7 (Lp convergence). Let p ≥ 1. We say that Xn converges to X in Lp if

lim
n→∞

E[|Xn −X|p] = 0.

We write
Xn

Lp

−→ X.

Example 1.5.8 (Normal variables with shrinking variance). If Xn ∼ N(0, 1/n), then Xn
L2

−→ 0,
since

E[X2
n] = Var(Xn) =

1
n → 0.

Example 1.5.9 (Convergence in L1 but not almost surely). Let Ω = [0, 1] with Lebesgue
measure and define

Xn(ω) = 1[0,1/n](ω).

Then E[Xn] = 1/n → 0, so Xn
L1

−→ 0. However, Xn(0) = 1 for all n, so Xn does not converge
to 0 pointwise at ω = 0. This shows that Lp convergence does not imply a.s. convergence.

Note

Lp convergence is a norm convergence: the Lp-distance between Xn and X tends to zero.
- It is stronger than convergence in probability:

Xn
Lp

−→ X ⇒ Xn
P−→ X.

- It does not imply almost sure convergence in general. - It requires integrability: both Xn

and X must belong to Lp.
In applications, L2 convergence is particularly important because it is tied to variance and
Hilbert space structure.

1.5.4 Weak convergence

Definition 1.5.10 (Weak convergence / convergence in distribution). We say thatXn converges

in distribution (weakly) to X, written Xn
d−→ X, if

lim
n→∞

FXn(x) = FX(x), ∀x ∈ R where FX is continuous,

where FX is the cumulative distribution function (CDF) of X.

Example 1.5.11 (Normal variables collapsing to a point mass). If Xn ∼ N(0, 1/n), then

Xn
d−→ 0, the degenerate distribution at 0 with F (x) = 1{x≥0}.

Example 1.5.12 (Convergence in probability implies weak convergence). If Xn
P−→ X, then

automatically Xn
d−→ X. For instance, if Xn = X + ξn with ξn ∼ Uniform(−1/n, 1/n) as before,

then Xn
P−→ X and hence also Xn

d−→ X.
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Note

Weak convergence is the weakest of the common convergence modes:
- It refers only to the convergence of distributions, not to pointwise behaviour of random
variables. - It does not require Xn and X to live on the same probability space. - It is
implied by convergence in probability:

Xn
P−→ X ⇒ Xn

d−→ X.

- It is the natural framework for many asymptotic results in statistics and probability, most
famously the Central Limit Theorem.

1.5.5 Law of Large Numbers

Theorem 1.5.13 (Weak Law of Large Numbers (WLLN)). Let (Xi)i≥1 be i.i.d. random vari-
ables with mean µ = E[X1] < ∞. Then

1

n

n∑
i=1

Xi
P−→ µ.

Theorem 1.5.14 (Strong Law of Large Numbers (SLLN)). Let (Xi)i≥1 be i.i.d. random vari-
ables with mean µ = E[X1] < ∞. Then

1

n

n∑
i=1

Xi
a.s.−−→ µ.

Example 1.5.15 (Sample averages of coin tosses). Let Xi be i.i.d. Bernoulli(p). Then the
sample average

Xn =
1

n

n∑
i=1

Xi

is the proportion of heads in n tosses. By the WLLN, Xn
P−→ p. By the SLLN, Xn

a.s.−−→ p. Thus
the empirical frequency converges to the true probability both in probability and almost surely.

Note

- The weak law ensures that averages converge to the mean in probability. - The strong
law strengthens this to almost sure convergence, i.e. pointwise convergence for almost every
outcome.
Both results formalise the idea that empirical averages stabilise around their expected value,
justifying the interpretation of E[X] as the “long-run average” of repeated trials.

1.5.6 Central Limit Theorem

Theorem 1.5.16 (Central Limit Theorem (CLT)). Let (Xi)i≥1 be i.i.d. random variables with
mean µ and variance σ2 ∈ (0,∞). Then

1√
n

n∑
i=1

(Xi − µ)
d−→ N(0, σ2).

24



Example 1.5.17 (Coin tosses). Let Xi ∼ Bernoulli(p). Then µ = p, σ2 = p(1 − p). By the
CLT,

√
n
(
Xn − p

) d−→ N(0, p(1− p)) .

Thus, for large n, the empirical proportion of heads is approximately normal with mean p and
variance p(1− p)/n.

Note

The CLT is the cornerstone of probability and statistics. It says that suitably normalised
sums of i.i.d. random variables converge in distribution to a normal random variable, regard-
less of the original distribution (under mild moment conditions). This explains the ubiquity
of the Gaussian distribution in applied probability and statistics.

Summary

Convergence concepts compared:

Almost sure (a.s.): Xn
a.s.−−→ X if Xn(ω) → X(ω) for almost every ω. Strongest form:

pointwise convergence except on a null set.

In probability: Xn
P−→ X if P(|Xn−X| > ε) → 0 for all ε > 0. Weaker than a.s., stronger

than in distribution.

Lp: Xn
Lp

−→ X if E[|Xn −X|p] → 0. Norm convergence, implies convergence in probability.

Weak (in distribution): Xn
d−→ X if FXn(x) → FX(x) at continuity points of FX . Weak-

est form: distributional convergence only.

1.6 Filtrations and Adapted Processes

1.6.1 Filtration (Ft)t≥0

Definition 1.6.1 (Filtration). On a probability space (Ω,F ,P), a filtration is a family of sub-
σ-algebras

(Ft)t≥0 ⊆ F such that Fs ⊆ Ft whenever s ≤ t.

We interpret Ft as the information available up to time t.

Definition 1.6.2 (Usual conditions / augmentation). A filtration (Ft) satisfies the usual con-
ditions if:

1. Completeness: Every P-null set in F belongs to F0 (and hence to all Ft).

2. Right-continuity: Ft =
⋂

u>tFu for all t ≥ 0.

Given any filtration, one can construct its P-augmentation that satisfies these usual conditions.

Example 1.6.3 (Natural filtration of a process). Let (Xt)t≥0 be a stochastic process on
(Ω,F ,P). Its natural filtration is

FX
t := σ

(
Xs : 0 ≤ s ≤ t

)
,

the smallest σ-algebra making the path segment (Xs)s≤t observable.
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Example 1.6.4 (Brownian filtration). If (Wt)t≥0 is a Brownian motion, the canonical choice
is the (completed, right-continuous) natural filtration

FW = (FW
t )t≥0, FW

t := σ(Ws : s ≤ t) augmented to satisfy the usual conditions.

This is the standard setup for martingales and Itô calculus.

Example 1.6.5 (Discrete-time filtration from observations). At times 0 = t0 < t1 < · · · < tn,
define

Ftk = σ(Xt0 , . . . , Xtk).

Then Ft0 ⊆ · · · ⊆ Ftn captures information from progressively more observations.

Proposition 1.6.6 (Basic facts). Let (Ft) be a filtration and t 7→ Xt a process.

1. If Y is Fs-measurable and s ≤ t, then Y is also Ft-measurable.

2. If X is adapted to (Ft) (see next subsection), then for any Borel g, g(Xt) is Ft-measurable.

3. If (Ft) is right-continuous, then conditioning at t or just after t coincides:

E[ · |Ft] = E[ · |
⋂
u>t

Fu].

Summary

Filtration = information growth. Ft encodes what can be observed by time t. The
usual conditions (complete & right-continuous) provide the technical framework needed for
martingale theory and stochastic integration.

1.6.2 Adapted processes

Definition 1.6.7 (Adapted process). Let (Ω,F ,P) be a probability space with filtration (Ft)t≥0.
A stochastic process (Xt)t≥0 is said to be adapted to (Ft) if

Xt is Ft-measurable for each t ≥ 0.

Example 1.6.8 (Natural filtration). If (Xt) is any process, then it is automatically adapted to
its natural filtration

FX
t = σ(Xs : 0 ≤ s ≤ t).

Example 1.6.9 (Brownian motion). Let (Wt) be a Brownian motion with its completed, right-
continuous natural filtration (FW

t ). Then (Wt) is adapted to (FW
t ). This is the canonical setup

in stochastic calculus.

Example 1.6.10 (Non-adapted process). Suppose (Wt) is a Brownian motion with filtration
(FW

t ). Define Xt = WT −Wt for some fixed T > t. Then Xt depends on the future increment
WT −Wt, which is not FW

t -measurable. Thus (Xt) is not adapted to (FW
t ).

Proposition 1.6.11 (Basic facts). Let (Xt) and (Yt) be processes adapted to (Ft).

1. For any Borel function g, the process (g(Xt)) is adapted.

2. If both (Xt) and (Yt) are adapted, then so are (Xt + Yt) and (XtYt).
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3. If (Xt) is adapted and (Ft) is right-continuous, then the left-limit process (Xt−) is also
adapted.

Summary

Adapted process = no anticipation. At each time t, the value Xt is measurable with
respect to the information Ft available up to that time. Thus, an adapted process cannot
“see the future”. This non-anticipativity condition is essential for martingale theory and
stochastic integration.

1.6.3 Stopping times

Definition 1.6.12 (Stopping time). Let (Ft)t≥0 be a filtration. A random time τ : Ω → [0,∞]
is called a stopping time (with respect to (Ft)) if

{τ ≤ t} ∈ Ft, ∀t ≥ 0.

Note

Intuitively, whether τ ≤ t has occurred must be decidable using only the information avail-
able by time t. In other words, a stopping time is a random time that does not anticipate
the future.

Example 1.6.13 (Deterministic times). Any fixed time t0 defines a stopping time τ(ω) = t0.
Indeed, {τ ≤ t} is either ∅ or Ω, both of which are measurable.

Example 1.6.14 (First hitting time). For a process (Xt) adapted to (Ft), define

τ = inf{t ≥ 0 : Xt ≥ a}.

Then τ is a stopping time: the event {τ ≤ t} depends only on the trajectory (Xs)s≤t, not on
the future.

Example 1.6.15 (Non-example). Let τ = inf{t ≥ 0 : Xt ≥ a} − 1. This is generally not a
stopping time, because to decide if τ ≤ t one needs to know whether Xt+1 has crossed the
threshold, i.e. information from the future.

Proposition 1.6.16 (Basic properties).

1. If τ and σ are stopping times, then τ ∧ σ and τ ∨ σ are stopping times.

2. If τ is a stopping time and c ≥ 0 is deterministic, then τ + c is a stopping time provided
the filtration is right-continuous.

3. If (τn) is a sequence of stopping times, then supn τn and infn τn are stopping times.

Example 1.6.17 (Exit times for Brownian motion). For Brownian motion (Wt), define

τ = inf{t ≥ 0 : |Wt| ≥ 1}.

This is a stopping time, representing the first exit from (−1, 1). Moreover, τ < ∞ almost surely.

Summary

Stopping times = random but observable decision times. They mark the random
instants at which a process hits a condition, in a way consistent with available informa-
tion. Stopping times are essential for martingale theory, optimal stopping problems, and
stochastic control.
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Chapter 2

Discrete-Time Processes

2.1 Basic Definitions

2.1.1 Stochastic process in discrete time

Note

A stochastic process is just a collection of random variables indexed by time. In the discrete-
time setting, time takes integer values (e.g. n = 0, 1, 2, . . . ). Think of this as observing the
random system only at discrete snapshots rather than continuously.

Definition 2.1.1 (Discrete-time stochastic process). Let (Ω,F ,P) be a probability space. A
discrete-time stochastic process is a sequence of random variables

(Xn)n≥0, Xn : Ω → Rd,

indexed by the non-negative integers. Each Xn represents the state of the system at time n.

Example 2.1.2 (Simple random walk). Let (ξn)n≥1 be i.i.d. random variables with

P(ξn = 1) = P(ξn = −1) = 1
2 .

Define X0 = 0 and

Xn =
n∑

k=1

ξk, n ≥ 1.

Then (Xn)n≥0 is called the simple symmetric random walk. It models a particle on Z taking
independent ±1 steps.

Example 2.1.3 (Markov chain on a finite state space). Let S = {1, 2, . . . ,m} be a finite set.
A process (Xn)n≥0 taking values in S is specified by an initial distribution π0 and a transition
matrix P = (pij)i,j∈S , where

pij = P(Xn+1 = j | Xn = i).

This is a discrete-time stochastic process with the Markov property.

Theorem 2.1.4 (Kolmogorov extension theorem, discrete case). Given consistent finite-dimensional
distributions

P(X0 ∈ A0, . . . , Xn ∈ An), Ai ∈ B(Rd),

there exists a discrete-time stochastic process (Xn)n≥0 realising these distributions.
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Note

Finite-dimensional distributions are the joint laws of finitely many coordinates
(Xn1 , . . . , Xnk

). The extension theorem guarantees that specifying these consistently is
enough to define a full process.

Example 2.1.5 (IID process). If Xn ∼ i.i.d. N (0, 1), then (Xn)n≥0 is a discrete-time process
with independent standard Gaussian increments. This is the discrete analogue of white noise.

Note

Key mental models:

� Think of (Xn) as “random sequences” instead of a single random variable.

� Examples include coin tosses, dice rolls, daily stock returns, or random walks.

� The structure we impose later (filtrations, martingales, Markov property) will tell us
how the randomness unfolds over time.

2.1.2 Adaptedness to a filtration

Note

In probability theory, a filtration (Fn)n≥0 models the growth of information over time. A
process (Xn) is adapted if its value at time n can be determined from the information
available up to time n. In other words, the process does not “see into the future”.

Definition 2.1.6 (Adapted process). Let (Ω,F ,P) be a probability space with a filtration
(Fn)n≥0. A discrete-time stochastic process (Xn)n≥0 is said to be adapted to (Fn) if

Xn is Fn-measurable for each n ≥ 0.

Example 2.1.7 (Natural filtration). Given any process (Xn), its natural filtration is

FX
n := σ(X0, X1, . . . , Xn).

This is the smallest filtration making (Xn) adapted. Intuitively, it records exactly the informa-
tion generated by the process up to time n.

Example 2.1.8 (Random walk). Let (Xn) be a simple random walk, Xn =
∑n

k=1 ξk with i.i.d.
steps (ξk). If we define Fn = σ(ξ1, . . . , ξn), then (Xn) is adapted to (Fn) because Xn is a
measurable function of the increments up to time n.

Example 2.1.9 (A non-adapted process). Suppose (Wn) is a random walk with its natural
filtration (FW

n ). Define Yn = Wn+1 −Wn, i.e. the future increment at step n. Then Yn is not
FW
n -measurable, so (Yn) is not adapted. This illustrates the “no peeking into the future” rule.

Proposition 2.1.10 (Basic properties). Let (Xn) and (Yn) be processes adapted to a filtration
(Fn). Then:

1. For any Borel function g, the process (g(Xn)) is also adapted.

2. Linear combinations and products of adapted processes are adapted.

3. If (Xn) is adapted, then (maxk≤nXk) is also adapted.
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Note

Adaptedness is a minimal requirement for most constructions in stochastic processes. It
ensures that decisions or events at time n depend only on the information available up to
n, not on future outcomes. This is crucial for defining martingales, stopping times, and
stochastic integrals.

2.1.3 Independence vs. Markov property

Note

Independence and the Markov property are two different ways of describing how random
variables relate over time.

� Independence: future variables are completely unrelated to the past.

� Markov property: the future may depend on the present, but only through the
most recent state, not the full history.

In practice, independence is stronger, while the Markov property is weaker but often more
realistic.

Definition 2.1.11 (Independence). A family of random variables (Xn)n≥0 is said to be inde-
pendent if, for any finite set of indices n1 < · · · < nk,

P(Xn1 ∈ A1, . . . , Xnk
∈ Ak) =

k∏
j=1

P(Xnj ∈ Aj), Aj ∈ B(R).

Definition 2.1.12 (Markov property). A process (Xn)n≥0 with values in a measurable space
(S,S) satisfies the Markov property with respect to a filtration (Fn) if

P(Xn+1 ∈ A | Fn) = P(Xn+1 ∈ A | Xn), A ∈ S, n ≥ 0.

In words: given the present state Xn, the future Xn+1 is conditionally independent of the past
(X0, . . . , Xn−1).

Example 2.1.13 (IID sequence). Let (ξn) be i.i.d. random variables. Then the processXn = ξn
is independent. It also satisfies the Markov property (trivially), since knowing Xn gives no
information about Xn+1.

Example 2.1.14 (Random walk). Let Xn =
∑n

k=1 ξk with i.i.d. increments (ξk). The in-
crements are independent, but the process (Xn) itself is not independent: Xn+1 and Xn are
strongly related. However, (Xn) does satisfy the Markov property, because the distribution of
Xn+1 depends only on Xn and not on the full history.

Example 2.1.15 (Dependent but Markov). Consider a two-state Markov chain (Xn) with
transition matrix

P =

(
0.9 0.1
0.4 0.6

)
.

Clearly, Xn+1 depends on Xn, so the sequence is not independent. But it is Markov: the
distribution of the next state depends only on the current state.
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Note

� Independence =⇒ Markov property, but not vice versa.

� Independence is rare in time series (most real data have memory).

� The Markov property is the natural compromise: the process has memory, but only
of the most recent state.

� Financial models like random walks, binomial trees, and Markov chains rely on this
property.

2.2 Markov Chains

2.2.1 Definition and transition matrices

Note

A Markov chain is the most fundamental discrete-time model of dependence. It assumes
that the next state of the system depends only on the current state, not on the full history.
This makes it both mathematically tractable and widely applicable (queues, population
models, finance, etc.).

Definition 2.2.1 (Markov chain). Let (Xn)n≥0 be a stochastic process on a countable state
space S. We say (Xn) is a Markov chain with respect to a filtration (Fn) if

P(Xn+1 = j | Fn) = P(Xn+1 = j | Xn), ∀j ∈ S, n ≥ 0.

The conditional probabilities

pij := P(Xn+1 = j | Xn = i), i, j ∈ S,

are called the transition probabilities.

Definition 2.2.2 (Transition matrix). For a finite or countable state space S, the transition
probabilities can be arranged into a matrix

P = (pij)i,j∈S , pij ≥ 0,
∑
j∈S

pij = 1 ∀i.

P is called the transition matrix. It describes the full dynamics of the Markov chain.

Example 2.2.3 (Two-state chain). Let S = {0, 1} with transition matrix

P =

(
0.7 0.3
0.4 0.6

)
.

If Xn = 0, then Xn+1 = 0 with probability 0.7 and Xn+1 = 1 with probability 0.3. Similarly,
from state 1, the chain moves to 0 with probability 0.4 and remains at 1 with probability 0.6.

Example 2.2.4 (Random walk on Z). Let (Sn) be a simple symmetric random walk:

P(Sn+1 = Sn + 1 | Sn) =
1
2 , P(Sn+1 = Sn − 1 | Sn) =

1
2 .

Here S = Z and the transition matrix is infinite, with pi,i+1 = pi,i−1 =
1
2 .
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Proposition 2.2.5 (Distribution update). If πn is the distribution of Xn written as a row
vector, then

πn+1 = πnP.

Thus, starting from initial distribution π0, we have πn = π0P
n.

Note

Key ideas to keep in mind:

� The Markov property means “memoryless” beyond the present.

� The transition matrix P encodes all the dynamics.

� Computing future distributions reduces to repeated matrix multiplication.

� For infinite state spaces, P is not a literal matrix but an operator with the same
interpretation.

2.2.2 Chapman-Kolmogorov equations

Note

The Chapman-Kolmogorov equations formalise the idea that transitions over multiple steps
can be decomposed into successive one-step transitions. They provide the link between
short-term and long-term behaviour of a Markov chain.

Theorem 2.2.6 (Chapman-Kolmogorov equations). Let (Xn) be a Markov chain on state space
S with transition matrix P = (pij). For all i, j ∈ S and integers m,n ≥ 0,

P(Xm+n = j | X0 = i) =
∑
k∈S

P(Xm = k | X0 = i)P(Xn = j | X0 = k).

Equivalently, in terms of P ,
Pm+n = PmPn.

Idea of proof. Condition on the intermediate state Xm:

P(Xm+n = j | X0 = i) =
∑
k∈S

P(Xm = k | X0 = i)P(Xm+n = j | Xm = k).

By the Markov property, the second factor reduces to an n-step transition probability from k
to j. This gives the formula above.

Example 2.2.7 (Two-step transitions). Suppose S = {0, 1} with transition matrix

P =

(
0.7 0.3
0.4 0.6

)
.

Then the two-step transition matrix is

P 2 = P · P =

(
0.7 0.3
0.4 0.6

)(
0.7 0.3
0.4 0.6

)
=

(
0.61 0.39
0.52 0.48

)
.

For example, starting at state 0, the probability of being in state 1 after two steps is 0.39.
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Example 2.2.8 (Random walk on Z). For the simple symmetric random walk, the probability
of moving from i to j in n steps is

p
(n)
ij = P(Sn = j | S0 = i) =

(
n

n+j−i
2

)
2−n,

whenever n+ j − i is even; otherwise p
(n)
ij = 0. These probabilities arise by repeatedly applying

the Chapman-Kolmogorov relation.

Note

Key consequences:

� The entire multi-step behaviour of a Markov chain is determined by the one-step
matrix P .

� Transition probabilities over n steps are given by the nth power Pn.

� This allows us to study long-run behaviour using matrix analysis (eigenvalues, eigen-
vectors, convergence).

2.2.3 Classification of states

Note

Not all states of a Markov chain behave the same way. Some states can be left forever
(transient), others are revisited infinitely often (recurrent). Among recurrent states, some
are periodic, others aperiodic. Classifying states is the first step in understanding the long-
run behaviour of a Markov chain.

Definition 2.2.9 (Communicating states). In a Markov chain (Xn) with state space S:

� We say i leads to j (written i → j) if there exists n ≥ 0 such that p
(n)
ij > 0.

� States i and j communicate if i → j and j → i.

Communication is an equivalence relation. The equivalence classes are called communicating
classes.

Definition 2.2.10 (Irreducibility). A Markov chain is called irreducible if all states communi-
cate with each other, i.e. the chain consists of a single communicating class.

Definition 2.2.11 (Recurrence and transience). A state i ∈ S is

� recurrent if Pi(Xn = i infinitely often) = 1, equivalently
∑∞

n=0 p
(n)
ii = ∞.

� transient if Pi(Xn = i infinitely often) < 1, equivalently
∑∞

n=0 p
(n)
ii < ∞.

Definition 2.2.12 (Periodicity). The period of a state i is

d(i) := gcd{n ≥ 1 : p
(n)
ii > 0}.

If d(i) = 1, then i is aperiodic; otherwise i is periodic with period d(i).

Example 2.2.13 (Random walk on Z). For the simple symmetric random walk on Z:
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� All states communicate, so the chain is irreducible.

� Each state is recurrent in dimension 1, but transient in higher dimensions (classical result).

� Each state has period 2, since returns are only possible after an even number of steps.

Example 2.2.14 (Two-state chain). For the chain with transition matrix

P =

(
0.7 0.3
0.4 0.6

)
,

the states communicate, so the chain is irreducible. Both states are recurrent (finite irreducible
chains have only recurrent states). They are also aperiodic, since pii > 0 implies possible returns
in both even and odd numbers of steps.

Proposition 2.2.15 (Finite irreducible chains). If a Markov chain has a finite state space and
is irreducible, then all states are positive recurrent. That is, the expected return time to any
state is finite.

Note

Key insights:

� Transient states may be visited, but eventually are left behind forever.

� Recurrent states are visited infinitely often; if the chain is finite and irreducible, every
state is recurrent.

� Periodicity matters for convergence: a chain with period d > 1 oscillates between
classes of states, while aperiodic chains “mix” smoothly.

These classifications pave the way for the study of stationary distributions.

2.2.4 Stationary distributions

Note

A stationary distribution describes the long-run behaviour of a Markov chain. It is a
probability distribution on the state space that remains unchanged as the chain evolves. If
the chain is irreducible and aperiodic (under mild conditions), it converges to its stationary
distribution regardless of the starting state.

Definition 2.2.16 (Stationary distribution). Let (Xn) be a Markov chain with transition ma-
trix P on state space S. A probability vector π = (πi)i∈S is called a stationary distribution
if

π = πP,
∑
i∈S

πi = 1, πi ≥ 0.

Equivalently, if X0 ∼ π, then Xn ∼ π for all n ≥ 0.

Example 2.2.17 (Two-state chain). Consider the chain with transition matrix

P =

(
0.7 0.3
0.4 0.6

)
.

To find the stationary distribution, solve π = πP with π0 + π1 = 1. This gives

π =
(
4
7 ,

3
7

)
.

Thus in the long run, the chain spends about 57% of the time in state 0 and 43% in state 1.
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Example 2.2.18 (Random walk on a finite cycle). Let S = {0, 1, . . . ,m − 1} and define a
symmetric random walk with

pi,i+1 (mod m) = pi,i−1 (mod m) =
1
2 .

This chain is irreducible and symmetric. The stationary distribution is uniform:

πi =
1
m , i = 0, . . . ,m− 1.

Proposition 2.2.19 (Existence and uniqueness). If a Markov chain is finite, irreducible, and
aperiodic, then:

� It admits a unique stationary distribution π.

� For any initial distribution µ, the distribution of Xn converges to π as n → ∞:

µPn → π.

Note

Key insights:

� The stationary distribution is the long-run equilibrium of the chain.

� In finite irreducible aperiodic chains, every trajectory “forgets” its starting point and
settles into π.

� For reducible chains, multiple stationary distributions may exist, each supported on
a closed communicating class.

� In applications, stationary distributions often describe steady-state behaviour: e.g.
long-run market share, equilibrium queue lengths, or genetic distributions.
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Summary

� Definition: A Markov chain is a discrete-time process where the future depends only
on the present, not on the full past. Transition probabilities pij form the transition
matrix P , which encodes the dynamics.

� Chapman–Kolmogorov equations: Multi-step transition probabilities are ob-
tained by matrix powers:

Pm+n = PmPn, πn = π0P
n.

� Classification of states:

– States communicate if transitions are possible in both directions.

– Chains are irreducible if all states communicate.

– States can be recurrent (visited infinitely often) or transient (eventually aban-
doned).

– The period of a state i is d(i) = gcd{n : p
(n)
ii > 0}. Aperiodic states mix smoothly.

� Stationary distributions:

– A stationary distribution π satisfies π = πP .

– If the chain is finite, irreducible, and aperiodic, then there exists a unique sta-
tionary distribution, and

µPn → π for any initial distribution µ.

– Stationary distributions describe the long-run equilibrium behaviour of the chain.

2.3 Discrete-Time Martingales

2.3.1 Martingales, submartingales, supermartingales

2.3.2 Symmetric random walk

2.3.3 Doob martingale

2.3.4 Properties

2.3.5 Doob’s decomposition

2.3.6 Doob’s maximal inequality

2.3.7 Optional stopping theorem

2.3.8 Martingale convergence theorem

2.3.9 Strong law of large numbers
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Chapter 3

Continuous-Time Processes

3.1 Basic Concepts

3.1.1 Definition of a continuous-time process

3.1.2 Filtration and adaptedness

3.1.3 Right-continuous (càdlàg) sample paths

3.1.4 Kolmogorov continuity theorem

3.2 Poisson Process

3.2.1 Definition and construction

3.2.2 Inter-arrival times

3.2.3 Properties

3.2.4 Distribution

3.2.5 Applications

3.3 Brownian Motion

3.3.1 Definition and properties

3.3.2 Scaling and time-homogeneity

3.3.3 Quadratic variation

3.3.4 Quadratic covariation

3.3.5 Lévy’s characterisation

3.3.6 Strong Markov property

3.3.7 Reflection principle

3.4 Continuous-Time Martingales

3.4.1 Definition relative to Ft

3.4.2 Examples

3.4.3 Martingale properties

3.4.4 Doob-Meyer decomposition

3.4.5 Martingale representation theorem

3.5 Convergence and Limit Theorems

3.5.1 Almost sure convergence and Lp

3.5.2 Martingale convergence theorem

3.5.3 Optional stopping theorem
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Chapter 4

Stochastic Calculus

4.1 Motivation

4.1.1 Why ordinary calculus fails for Brownian motion

4.1.2 Itô formula vs. Taylor expansion

4.2 Quadratic Variation and Covariation

4.2.1 Quadratic variation

4.2.2 Quadratic covariation

4.3 Stochastic Integrals

4.3.1 Definition of the Itô integral

4.3.2 Extension to square-integrable processes

4.3.3 Itô isometry

4.3.4 Key properties

4.4 Itô’s Lemma

4.4.1 Statement for one-dimensional Brownian motion

4.4.2 Multidimensional Itô’s lemma

4.4.3 Examples

4.5 Stochastic Differential Equations

4.5.1 General form

4.5.2 Existence and uniqueness

4.5.3 Weak vs. strong solutions

4.5.4 Examples

4.6 Martingale Tools

4.6.1 Local martingales vs. martingales

4.6.2 Stochastic exponentials and Doléans-Dade exponential

4.6.3 Exponential martingales

4.6.4 Girsanov’s theorem

4.6.5 Martingale representation theorem

4.7 Numerical Schemes

4.7.1 Euler-Maruyama method

4.7.2 Milstein scheme

4.7.3 Higher-order methods

4.8 Extensions

4.8.1 Stochastic integrals with respect to Poisson processes

4.8.2 Itô–Stratonovich integral

4.8.3 Itô–Döblin formula with jumps

4.8.4 Semimartingales

4.9 Applications

4.9.1 Black–Scholes model as an SDE

4.9.2 Pricing via risk-neutral expectation

4.9.3 Feynman–Kac formula

4.9.4 Connection to martingales
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Chapter 5

Financial Applications

5.1 Risk-Neutral Valuation

5.1.1 Fundamental theorem of asset pricing

5.1.2 Equivalent martingale measure

5.1.3 Risk-neutral pricing formula

5.1.4 Change of numéraire

5.1.5 Incomplete markets

5.2 Black-Scholes Model

5.2.1 Market assumptions

5.2.2 Black–Scholes PDE

5.2.3 Closed-form option pricing

5.2.4 Greeks

5.2.5 Hedging strategies

5.3 Numerical Methods

5.3.1 Monte Carlo simulation

5.3.2 Variance reduction methods

5.3.3 Binomial and trinomial trees

5.3.4 Finite difference methods

5.4 Exotic Options

5.4.1 Barrier options

5.4.2 Asian options

5.4.3 Digital options

5.5 Interest Rate Models

5.5.1 Short-rate models

5.5.2 Ornstein-Uhlenbeck process

5.5.3 Cox-Ingersoll-Ross process

5.5.4 Bond pricing

5.6 Stochastic Volatility and Jumps

5.6.1 Heston model

5.6.2 Merton jump-diffusion model
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