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Notation

R,N,7Z,Q,C Real, natural, integer, rational, complex numbers.

B(R) Borel o-algebra on R.

A Lebesgue measure.

Q) Sample space.

F o-algebra of events.

F: Filtration up to time t.

[P Physical (real-world) probability measure.

Q Risk-neutral (martingale) probability measure.

EF, EQ Expectation under P or Q. Assume under P unless stated otherwise.
w A generic element of the sample space 2, i.e. an elementary outcome.
1,4 Indicator of event A.

X; Generic stochastic process.

M; Generic martingale.

Wy Standard Brownian motion.

N; Poisson process.

(X)) Quadratic variation of process X up to time ¢.

dX; = p(t, Xy) dt + o(t, X;) dW; General stochastic differential equation.
S Asset price process.

B, Bank account / risk-free asset.

r Risk-free rate.

Vi Derivative price process.

A Hedge ratio.

2%y Convergence almost surely.

2, Convergence in probability.

LP .
— Convergence in LP.

d e
— Convergence in distribution (weak convergence).

vi



Introduction

This aims to explain stochastic processes from measure theory to financial applications. It
mainly serves as a way for me to not forget what I've learned, but hopefully I can make
something worthwhile and helpful as well.



Chapter 1

Measure Theory

1.1 Measure Spaces

1.1.1 Definition of s-algebra

Definition 1.1.1 (c-algebra). A o-algebra on a set €2 is a collection F of subsets of Q such
that:

(i) Qe F.
(ii) If A € F, then A°:=Q\ Aec F.
(iii) If Ay, Ag,--- € F, then Uzo:1 A, € F.

Example 1.1.2 (Coin tosses). Toss a coin twice, with heads probability p € (0,1). The sample
space is Q = {w1, w2, ws, wys}, where

w1 heads then heads,
wz heads then tails,
ws tails then heads,

wy tails then tails.

The full o-algebra is the power set F = P(2). Equivalently,

F =o0({wi}, {wa}, {ws}, {wa}).

Example 1.1.3 (Borel o-algebra on R). The Borel o-algebra on R, denoted B(R), is the smallest
o-algebra containing all open intervals (a,b) C R.

e By definition, (a,b) € B(R).
e Its complement (—oo,a] U [b,o0) is also in B(R).
e By closure under countable unions, (J;~,(1/n, 1 —1/n) = (0,1) is in B(R).

Definition 1.1.4 (Generated o-algebra). For a collection C C 29, the generated o-algebra o(C)
is the smallest o-algebra containing C:

o(C) =G :Gis ac-algebra and C C G }.

2



Definition 1.1.5 (Product c-algebra). If (2, F;) and (§22, F2) are measurable spaces, the
product o-algebra on q x Q9 is

Fi1® Fo ::J({AXB:AEfl, BG}—Q}).

Note

A o-algebra is the collection of events we are allowed to talk about. It is closed under

complements and countable unions, so if an event is included, so are “not that event” and

“any countable combination of such events.”

1.1.2 Measures

Intuitively, a measure is a generalisation of length, area, or volume. Formally, it is a function
that assigns a nonnegative number to each set in a g-algebra, in a way that is consistent with
disjoint unions.

Definition 1.1.6 (Measure). Let (€2, F) be a measurable space. A function
w:F — [0, 00]

is called a measure if

(i) p(@) =0,

(ii) For any countable collection {A;}?°, C F of pairwise disjoint sets,
(e.o] (e.9]
I (U Ai) = u(A).
i=1 i=1

The triple (2, F, 1) is then called a measure space.

Definition 1.1.7 (o-finite measure). A measure p on (2, F) is o-finite if
Q= U A, for sets A, € F with u(A,) < oc.
n=1

Definition 1.1.8 (Complete measure space). A measure space (£, F, u) is complete if whenever
N € F with uy(N) =0 and A C N, then A € F.

Remark 1.1.9. Intuitively, a measure is a rule for assigning “sizes” or “weights” to sets. -

Condition (i) says the empty set has size zero. - Condition (ii) says that the measure is countably
additive: the size of a disjoint union is the sum of the sizes.

This captures the familiar properties of length, area, or volume, but in a far more general
setting.

Some important consequences:

Proposition 1.1.10 (Basic properties of measures). Let (Q,F, u) be a measure space. Then:

(i) Monotonicity: If A C B, then u(A) < u(B).



(i) Finite additivity: If Ay, ..., A, are pairwise disjoint,
M(U Ai) = u(Ai).
i=1 i=1
(ii) Continuity from below: If Ay C Ay C ..., then
(0] = pmiao
(iv) Continuity from above: If Ay O As D ... and u(A;) < oo, then
() - pao

Proof (sketch). (i) If A C B, then B = AU (B \ A) disjointly, hence u(B) = p(A) + w(B \
A) > p(A). (i) Special case of countable additivity. (iii) Define B = (Jo-; A,. The sets
B, = A, \ Ap—1 are disjoint, so u(B) = > o2 u(By) = lim, oo u(Ay). (iv) Apply (iii) to
complements A¢. O

Thus, a measure behaves much like ordinary “volume” but is abstract enough to cover dis-
crete spaces (counting measure), continuous spaces (Lebesgue measure), and probability spaces
(where the measure of the whole space is 1).

Example 1.1.11 (Counting measure). On any set ), define u(A) = |A] if A is finite, and
u(A) = oo if A is infinite. This is a measure called the counting measure.

Example 1.1.12 (Dirac measure). For a fixed point wq € 2, define

5 (A)— 1 ifwy € A,
LN 00 ifw ¢ A

This is a measure concentrated at a single point, called the Dirac measure.

Example 1.1.13 (Lebesgue measure). On (R, B(R)), the Lebesgue measure X is defined so that
A((a,b)) = b — a for all intervals a < b. It extends uniquely to all Borel sets and beyond.

Remark 1.1.14. For an interval (a,b) C R, the Lebesgue measure satisfies A((a,b)) = b—a. This
coincides with the Riemann integral of the constant function 1:

b
)\((a,b)):/ 1dz.

The Lebesgue measure can be viewed as the rigorous extension of this “length of an interval”
idea to much more complicated sets.

Note

A measure is a way of assigning “sizes” or “weights” to sets in a consistent way. It generalises
length, area, and volume, but can also count discrete points or assign probability mass. The
key idea is that disjoint sets add up.



1.1.3 Probability Measures

A probability measure is simply a measure normalised so that the total mass is one.

Definition 1.1.15 (Probability measure). A measure P on (2, F) is called a probability measure
if P(Q2) = 1. Then (2, F,P) is called a probability space.

Example 1.1.16 (Finite probability space). Let Q = {wy,ws,...,w,} and F = 2% If p; > 0
with "% | p; = 1, define

PHw}) =pi, i=1,...,n.
This extends uniquely to a probability measure on all subsets of €.

Example 1.1.17 (Coin toss). Let Q = {H,T}? = {(H,H),(H,T),(T,H),(T,T)}. For a fair
coin, assign P(w) = i for each w € Q. Then (2, F,P) is a probability space with uniform
distribution.

Example 1.1.18 (Gaussian measure). On (R, B(R)), define for A € B(R),

]P(A):/ Leﬂﬁ/Qdaz.
A N2

This probability measure corresponds to the standard normal distribution N(0,1).

Proposition 1.1.19 (Basic properties of probability measures). Let (2, F,P) be a probability
space. Then for all A,B € F:

(i) Bounds: 0 <P(A) < 1.
(ii) Complement rule: P(A°) =1 —P(A).
(i1i) Monotonicity: If A C B, then P(A) < P(B).
(iv) Finite additivity: If AN B =10, then
P(AUB) =P(A) + P(B).
(v) Union bound (Boole’s inequality):
P(AU B) <P(A) +P(B).

More generally, for any finite or countable collection {A;}i>1,

o(04) =S
=1 =l

(vi) Inclusion—Exclusion (two sets):

P(AU B) = P(A) + P(B) — P(AN B).

Proof (sketch). (i) Since ) C A C Q and P(0) = 0, P(2) = 1, monotonicity gives 0 < P(A4) < 1.
(ii) Follows because 2 = A U A¢ disjointly. (iii) Same as the monotonicity of general measures.
(iv) From countable additivity. (v) The sets A and B\ A are disjoint, so P(AU B) = P(A) +
P(B\ A) <P(A)+P(B). (vi) Standard rearrangement using AU B = (A\ B) U B. O

Note

A probability measure is just a measure with P(Q2) = 1. This ensures the whole sample
space has probability 1, and all other events get a value between 0 and 1. Every probability
measure is o-finite, since (2 itself has finite measure. This forms the rigorous foundation for
Kolmogorov’s axioms of probability.



1.1.4 Measurable functions

Note

So far, measures are defined only on sets. To assign probabilities to events involving a
function X : @ — R (such as {X < 1}), we need to guarantee that such events belong to
F. This requirement is called measurability, and it allows us to treat random variables as
functions compatible with the underlying probability structure.

Definition 1.1.20 (Measurable function). Let (2, F) be a measurable space and (R, B(R)) the
real line with its Borel o-algebra. A function X :  — R is called F-measurable if

X 'B)={weQ: X(w)eB}eF, VBecB(R).

Proposition 1.1.21 (Practical criterion for measurability). A function X : Q@ — R is measur-
able if and only if

{we: X(w)<a}eF for all a € R.
Example 1.1.22 (Discrete random variable). Let Q@ = {HH, HT,TH,TT?}, and define X :
1 — R as the number of heads. Then {X =1} = {HT,TH} € F. All preimages of sets of the
form {0}, {1}, {2} are measurable, hence X is measurable.

Example 1.1.23 (Identity function). Let Q@ = R, F = B(R), and X (w) = w. For any a € R,
{w: X(w) <a} = (—0,a] € B(R),
so X is measurable.

Remark 1.1.24 (Random variables). In probability theory, F-measurable functions are called
random variables. Thus, a random variable is simply a measurable mapping from the sample
space into the real line.

Remark 1.1.25 (Measurability with respect to a smaller o-algebra). If G C F, we say X is
G-measurable if X~1(B) € G for all Borel sets B. Intuitively, measurability depends on the
“information” available. For example, if G = {0),Q}, the only G-measurable functions are
constants.

Remark 1.1.26 (Connection to filtrations). If (F;);>0 is a filtration, then X; is Fi-measurable if
its value at time ¢ is determined by the information available up to ¢. This notion is central for
defining adapted processes later.

Proposition 1.1.27 (Closure properties). If X, Y are measurable functions and f : R — R is

Borel-measurable, then

(i) X+Y, X -Y, XY, and max(X,Y) are measurable.
(ii) foX is measurable.
(111) If (X,,) is a sequence of measurable functions, then sup,, X,, inf, X,,, limsup,, X,,, and
liminf,, X,, are measurable.

Definition 1.1.28 (Equality almost everywhere). Given a measure space (2, F,u), we say
X =Y almost everywhere (a.e.) if p({w : X(w) #Y(w)}) =0.

Remark 1.1.29. In probability theory, random variables that are equal a.e. are considered equiv-
alent, since they induce the same distributions and expectations. Most results hold “a.e.” rather
than pointwise.

Note

Informally, a function is measurable if every event of the form {X € B} has a well-defined
probability, i.e. its preimage lies in the o-algebra.



1.2 Integration

1.2.1 Lebesgue integral

The Riemann integral partitions the domain (the z-axis), while the Lebesgue integral partitions
the range (the y-axis). This shift makes the Lebesgue integral compatible with measure theory,
allowing us to integrate functions with many discontinuities or defined on abstract spaces.

Note

Recall: the Lebesgue measure X on R extends the idea of length, with A((a,b)) = b—a. This
measure lets us assign “sizes” to complicated sets, forming the foundation of the Lebesgue
integral.

Step 1. Simple functions. If s = Z?:l a;l4, with a; > 0 and A; measurable, define
n
/sd,u = Zaiu(Ai).
i=1

Step 2. Nonnegative functions. For a measurable f > 0, define

/fdu = sup{/sd,u:OSs < f, s simple}.

Step 3. General functions. If f = fT — f~ with [ fTdp < oo and [ f~ du < oo, set

[ran= [ srau= [ dn.

Example 1.2.1 (Riemann vs Lebesgue: f(x) = 22 on [0,1]). We compare the two integration
approaches:

¢ Riemann: Subdivide [0, 1] into n equal subintervals of width Az = % The right-endpoint

Riemann sum is
kN 1
S = - =
=2 ()

Using > p_, k% = w, one finds

lim S, = =
n—oo

e Lebesgue: Slice the range instead. For y € [0, 1],
By ={z€0,1]:2° >y} = (v, 1],
with measure A\(£,) = 1 — \/y. By the layer-cake representation,

/01x2d/\:/01(1—\/§)dy:;.



Both methods give the same result, but the perspective differs: Riemann integration partitions
the domain into vertical slices, while Lebesgue integration partitions the range into horizontal
slices.

Example 1.2.2 (Why Lebesgue is stronger). Let f = 1gn,1)-

e Riemann: every interval contains rationals and irrationals, so upper sums = 1 and lower
sums = 0. Hence not Riemann-integrable.

e Lebesgue: rationals have measure zero, so [ fdA = 0.

Proposition 1.2.3 (Basic properties). If f,g are measurable and integrable, and o > 0:

(i) Linearity: [(f+g)dp= [ fdu+ [gdp,
(ii) Positive homogeneity: [afdu= o [ fdu,
(i) Monotonicity: f <g = [f< [y,

(iv) Agreement with Riemann when f is Riemann-integrable.

Note

Riemann: slice vertically. Lebesgue: slice horizontally. This distinction allows us to prove
the convergence theorems that follow: Monotone Convergence, Fatou’s Lemma, and the
Dominated Convergence Theorem.

Note

Supremum and Infimum. For a set A C R: - sup A = least upper bound, - inf A =
greatest lower bound.
Limsup and Liminf. For a sequence (ay):

limsupa, = lim supag, liminfa, = lim inf a.
N—00 n—=00 >y n—o0 n—oo k>n

If limsup = liminf, the usual limit exists. These tools are essential for the convergence
theorems that follow.

1.2.2 Monotone Convergence Theorem

Theorem 1.2.4 (Monotone Convergence Theorem (MCT)). Let (Q, F, 1) be a measure space
and let (X,),>1 be an increasing sequence of nonnegative measurable functions, i.e. 0 < X; <
X9 < -+ and X, (w) T X (w) for p-a.e. w € Q, for some measurable X : Q — [0, 00]. Then

nlggo/Xndu = /Xdu,

with the understanding that both sides may be +oc.

Proof. Since X,, < X for all n, monotonicity of the integral gives [ X, du < [ X du, hence
limsup,, [ X, dp < [ X dp.

For the reverse inequality, let s be any simple function with 0 < s < X. Write s = Z;n:l a;la;
with a; > 0 and A; € F disjoint. Fix j. On A; we have a; < X. Since X,, 1 X a.e., the sets

Ajpi={weA;: Xp(w) > a;}



increase to A; (i.e. Aj, 1T Aj), so by continuity from below of 1, 1(A;.) T 1(A;).

For each n,
/Xn dp > Zaj p(Ajn).
j=1

Taking n — oo and using p(A;n) T p(4;),
hnnilor.}f/Xndu > z;aj n(4;) = /sdu.
j:

Since this holds for every simple s < X, taking the supremum over all such s yields lim inf,, [ X, du >
[ X dp by the definition of the Lebesgue integral of X. Combining the two inequalities gives
lim, [ X, dp= [ X dpu. Ol

Example 1.2.5 (Indicator functions filling up the interval). Let Q = [0,1] with Lebesgue
measure A, and define X, (w) = 1 1—1/p)(w). Then 0 < X7 < Xp < -+ and X, (w) 1 1 for
A-a.e. w € [0,1]. Hence, by MCT,

1 1
lim Xn(w) dA(w) = / 1dx=1.
Example 1.2.6 (Truncation of a nonnegative random variable). Let (€2, F,P) be a probability
space and X :  — [0, oo] be measurable. Define the increasing sequence X,, = min(X,n). Then
X, T X P-a.s., so by MCT
lim E[X,] = E[X].

n—oo

This holds whether E[X] is finite or infinite. In particular, if E[X] < oo it shows that expecta-
tions can be computed as limits of expectations of the bounded truncations X,,.

Note

MCT justifies interchanging limit and integral for monotone increasing nonnegative se-

/lim Xpdp = lim /Xnd,u.
n—0o0 n—o0

quences:

1.2.3 Fatou’s Lemma

Lemma 1.2.7 (Fatou’s Lemma). Let (X;),>1 be a sequence of nonnegative measurable random
variables on a measure space (0, F, ). Then

n—o0 n—o0

E [lim inf Xn} < liminf E[X,].
Proof (sketch). Define
Yi(w) := %gaXn(w), kE=1,2,...
so that Y7 <Y; < ... and
lim Y;(w) = liminf X, (w).

k—o0 n—00

By the Monotone Convergence Theorem,

E[hm inf Xn} — lim B[]
)

n—o0
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But Y. < X, for all n > k, so

< i .
EYy] < inf E[X,]

Taking limits gives
lim E[Yy] < lim inf E[X,,] = liminf E[X,,].

k—o0 k—oon>k n—00

Corollary 1.2.8 (Fatou with integrable bounds). Let (X,,) be random variables.
(i) If X, > Y P-a.s. for all n, where Y € L', then

i [lim inf Xn} < liminf E[X,].

n—oo n—oo

(ii) If X, <Y P-a.s. for all n, where Y € L', then

E [lim sup Xn] > limsup E[X,,].

n—o0 n—00

(This follows by applying Fatou’s Lemma to —X,,.)

Note

Informal explanation: Fatou’s Lemma says that expectations “preserve inequalities”
when passing to limits. - For the liminf version, the expectation of the pointwise liminf is
at most the liminf of expectations. - For the limsup version, the expectation of the pointwise
limsup is at least the limsup of expectations.

Intuitively, expectations cannot “overshoot” when you pass to limits. Fatou’s Lemma is
weaker than the Dominated Convergence Theorem, but it requires fewer assumptions. It is
often used as a building block for convergence theorems.

1.2.4 Dominated Convergence Theorem

Theorem 1.2.9 (Dominated Convergence Theorem (DCT)). Let (X,,) be a sequence of random
variables that converges to a random variable X P-a.s. Suppose there exists an integrable random
variable Y € L' such that | X,| <Y P-a.s. for alln > 1. Then

lim E[X,] = E[X].

n—oo

Proof. Since |X,| < Y as. and X,, — X a.s., by continuity of the absolute value we have
|X| <Y as., hence X € L! and E[|X|] < E[Y] < c0.

Consider the nonnegative random variables
U, =Y+ X, and V,:=Y — X,

which converge a.s. to U :=Y + X and V :=Y — X, respectively. By Fatou’s lemma applied
to (Uy),
E[X] < liminf E[X,,]. (1)
n—o0

Similarly, applying Fatou’s lemma to (V},),

E[X] > limsupE[X,,]. (2)

n—oo

10



Combining (1) and (2) gives

limsupE[X,] < E[X] < liminf E[X,],

n—00 =89
so the limit lim,,_, E[X,,] exists and equals E[X]. O

Example 1.2.10 (Necessity of domination). Let @ = [0, 1] with Lebesgue measure A, and
define

Xn(2) = nl1/m)(2)-
Then X, (z) — 0 for A-a.e. x, but

1
/ Xp(z)dxr =1 for all n.
0

So lim [ X,, # [lim X,,. Here there is no integrable dominating function Y, so the assumptions
of DCT fail. This shows why domination is essential.

Note

The DCT justifies exchanging limit and expectation when the sequence is uniformly domi-
nated by an L' random variable. It strengthens Fatou’s Lemma by giving equality instead
of just inequality, at the cost of requiring a domination condition.

1.2.5 Tonelli’s and Fubini’s theorems

For these theorems we state them without proof and illustrate their use.

Theorem 1.2.11 (Tonelli’s theorem). Let (21, F1, 1) and (2, Fa, p2) be o-finite measure
spaces. If f: Q1 x Qo — [0, 00] is measurable, then

L gamem = [ ([ sendne)dn@ = [ ([ fendn)dow.

Example 1.2.12 (Tonelli: double integral of a nonnegative function). Let f(x,y) = e ¥ on
(0,00) x (0,00) with Lebesgue measure. Then

/ / e @) gy dg :/ e % </ e Y dy) dz :/ e *(1)dx =1.
o Jo 0 0 0

Example 1.2.13 (Tonelli: indicator function). Let f(x,y) = 1{,4y<1) on [0, 1]2. Then

1,1 1 -z 1
/ / Lippy<ty dyde = / / ldydzx = / (1 —2x)dx = %
0o Jo 0o Jo 0

Theorem 1.2.14 (Fubini’s theorem). Let (Q1,F1, 1) and (Qa, Fa, p2) be o-finite measure
spaces. If f: Q1 x Qo — R is integrable, i.e.

/ Fld(u ® ) < oo,
Ql><Q2

then the iterated integrals exist, and

L gamem = [ ([ sendne)da@ = [ ([ fendn)dew.
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Example 1.2.15 (Fubini: alternating sign function). Let f(x,y) = sin(x) cos(y) on [0, 7] x [0, 7].

then /0 . /0 * ) ol s = /O ) ( /0 " cos(y) dy) dx =0,

The same result holds if we swap the order.

Example 1.2.16 (Fubini: absolute integrability required). Let f(x,y) = % on (0,00) x
(0,00). Then f is integrable, and

/ / sin(zy) dydx = T
o Jo xy 2

This uses the classical result fooo Sinlsu) du = 5. Here Fubini ensures we can swap the order of

integration safely.

Example 1.2.17 (Failure without absolute integrability). Consider f(z,y) = % on

(0,00)2. Both iterated integrals exist, but they are not equal, so the double integral is un-
defined. This illustrates why absolute integrability is required for Fubini’s theorem.

Note

Tonelli vs. Fubini. - Tonelli applies to nonnegative measurable functions, even if the inte-
gral is infinite. - Fubini applies to absolutely integrable functions, and guarantees equality
of iterated and double integrals.

Why it matters in stochastic calculus. These theorems justify exchanging the order of
integration in situations like: - computing expectations of stochastic integrals (E [ fdW =
J E[f] dW), - handling double integrals in covariance and quadratic variation computations,
- and working with stochastic Fubini theorems when interchanging stochastic and Lebesgue
integrals. They are essential whenever integrals over time and probability are combined.

1.2.6 Expectation as a Lebesgue integral

Definition 1.2.18 (Expectation). Let (2, F,P) be a probability space and X :  — R an
F-measurable random variable. If X is integrable, i.e. fQ | X|dP < oo, the ezpectation of X is

E[X] = /QX(W) dP(w).

Equivalently, if © = £(X) denotes the law (distribution) of X, then

E[X] —/Ra:du(x).

Proposition 1.2.19 (Basic properties of expectation). For integrable random variables X,Y
and constants a,b € R:

(i) Linearity: EjaX +bY] = aE[X] 4+ bE[Y].
(i1)) Monotonicity: If X <Y a.s., then E[X] < E[Y].
(i1i) Monotone Convergence: If X, T X, then E[X,,] T E[X] (by MCT).
(iv) Dominated Convergence: If X, — X a.s. and |X,| <Y € L', then E[X,] — E[X]
(by DCT).

12



Example 1.2.20 (Discrete random variable). Let Q@ = {w;,wy,...} with P({w;}) = p;, and
X (w;) = x;. Then

i
Thus the expectation reduces to a weighted average of the values z;.

Example 1.2.21 (Continuous random variable). Let X have density f with respect to Lebesgue
measure A on R. Then for any integrable X,

IE[X]:/Rxf(:):)d:B.

For example, if X ~ Uniform[0, 1], then E[X] = fol zdr = 3.

Example 1.2.22 (Mixed random variable). Suppose X is 0 with probability 0.5, and otherwise
uniformly distributed on [0,1]. Then £(X) is the mixture measure

E(X) = 05 50 aF 05 )\‘[0’1},

and .
E[X]:0.5-0+0.5/ rdr =1
(0]

This shows how the Lebesgue integral unifies discrete, continuous, and mixed cases.

Note

The expectation is simply the Lebesgue integral with respect to the probability measure. -
In the discrete case, the Lebesgue integral becomes a countable sum of values weighted by
probabilities. - In the continuous case, it becomes an ordinary integral against the density.
- In mixed cases, it naturally combines both.

This unified viewpoint is crucial: there is no need for separate definitions of expectation
depending on whether a random variable is discrete or continuous. Everything follows from
the Lebesgue integral.

Note

The law (or distribution) of a random variable X : Q — R is the probability measure £(X)
on (R, B(R)) defined by

L(X)(B)=P(X € B), BeBR).

It tells us the probability of X falling in any Borel set of R.
A common way to represent the law is via the cumulative distribution function (CDF):

Fx(z) :=P(X < z) = L(X)((—00,z]).
Examples:

o If X is discrete with P(X = 0) = 0.3, P(X = 1) = 0.7, then £(X) is the probability
measure assigning mass 0.3 to {0} and 0.7 to {1}.

e If X is standard normal, then £(X)(A4) = [, ﬁe‘ﬁ/z dx, and the CDF is Fx(z) =
f—xoo \/%e—ﬂ/Q dt.
In short: the law is the full probability measure; the CDF is one way of describing it.
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1.3 Probability Spaces

1.3.1 (Q, F,P)
Definition 1.3.1 (Probability space). A probability space is a triple (Q, F,P), where:

e () is the sample space, the set of all possible outcomes,
e F is a g-algebra of subsets of (), called events,

o P: F —[0,1] is a probability measure with P(2) = 1.

Note

This framework, due to Kolmogorov, is the foundation of modern probability theory. It is
simply a measure space (2, F, u) with total mass normalised to 1. This structure allows us
to rigorously define random variables, expectations, and stochastic processes.

Example 1.3.2 (Coin toss). Let Q@ = {H,T}, F = 2%, and P({H}) = P({T}) = 3. Then
(Q, F,P) is a simple probability space for a fair coin.

Example 1.3.3 (Gaussian distribution). Let @ = R, F = B(R), and

P(A) = / L rgr, AcBR).
A V2T

This defines a probability space for a standard normal random variable.

1.3.2 Random variables

Definition 1.3.4 (Random variable). A random variable is a measurable function
X (2 F) = (R, B(R)),
that is,

{we: X(w) <a} = X Y(~o0,d]) € F, Va € R.

Note

A random variable is not “random” in itself; it is a deterministic mapping on 2. Randomness
arises from the fact that the outcome w is unknown. Measurability ensures that events of
the form {X < a} are legitimate events in F.

Example 1.3.5 (Discrete random variable). Toss two coins: Q = {HH, HT,TH,TT}, define
X (w) = number of heads. Then X : Q — {0, 1,2} is measurable, and P(X = 1) = 1.

Example 1.3.6 (Continuous random variable). Let = [0, 1], F = B([0, 1]), and P = Lebesgue
measure on [0, 1]. Define X (w) = w. Then X is measurable and has the Uniform[0,1] distribu-
tion.

Remark 1.3.7. If E[|X|] < oo, we say that X is an integrable random variable. This distinction
is important when working with expectations.
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1.3.3 Distribution (Law)

Definition 1.3.8 (Law of a random variable). The law (or distribution) of a random variable
X is the pushforward measure £(X) on (R, B(R)) defined by

L(X)(B) :=P(X € B), B € B(R).
In other words, the law describes the probabilities of subsets of R induced by X.

Note

The law is a full probability measure on R. Different representations include:
e CDF: Fx(z) =P(X <z) = L(X)((—00,x]),
e PMF (discrete case): P(X = z;) for atoms z;,
e PDF (continuous case): a density f such that £(X)(A) = [, f(x) dz.

All of these are just different ways of describing the same measure £(X).

Example 1.3.9 (Gaussian distribution). If X ~ N(0, 1), then

L(X)(A) = /A 127Te_"”2/2d9:7 A € B(R).

The CDF is . )
Fx () = / L gy
oo V21

Example 1.3.10 (Discrete law). If X is the outcome of a fair die, then
LX)({k}) = 2, k=1,...,6.

Here the law is described by a probability mass function.

1.3.4 Independence

Definition 1.3.11 (Independence of events). Two events A, B € F are independent if
P(AN B) =P(A)P(B).

A family {4;} is independent if for any finite subcollection,

Pl ()4 | =P
j=1 J=1

Definition 1.3.12 (Independence of random variables). Random variables X,Y are indepen-
dent if the o-algebras they generate are independent. Equivalently,

P(X €A, YeB) =P(XcAPY e€B), VA BecBR),

where o(X) = {X~Y(B) : B € B(R)}.
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Remark 1.3.13. More generally, a family {X; : i € I'} of random variables is independent if the
o-algebras o(X;) are mutually independent, i.e.

ﬁ{XZ-]. € B;j} H]P’X € Bj)

i=1
for all finite choices 41, ..., and Borel sets B, ..., B,.

Example 1.3.14 (Independent coin tosses). Let X7, X5 be outcomes of two independent fair
coins (1 for head, 0 for tail). Then

PX1i=1Xo=1)=1=1.3.

D=

Example 1.3.15 (Independent Gaussians). If X, Y ~ N(0,1) are independent, then the joint
law is the product measure:

L(X,Y)(A x B) = L(X)(A) LY)(B),
so the joint density factorises as

fxy(zy) = fx(@)fy(y) = *(w +y%)/2

Note

Independence means that knowing one event (or random variable) provides no information
about the other. It is stronger than uncorrelatedness: if X ~ Uniform[—1,1] and Y = X?,
then E[XY] = E[X]E[Y] =0, so X,Y are uncorrelated but not independent.

1.3.5 Markov and Chebyshev inequalities

Theorem 1.3.16 (Markov’s inequality). Let X > 0 be a random wvariable with E[X] < oo.

Then e
P(X >a) < [ ], Va > 0.

a

Proof (sketch). For X >0,
E[X] > E[X - 1{x>q}] 2 a-P(X > a).
Dividing by a > 0 gives the result. ]

Theorem 1.3.17 (Chebyshev’s inequality). Let X be a random variable with mean p and

variance o2 < co. Then

0.2

P(‘X—M’ZE)SE—Q’ Ve > 0.

Proof (sketch). Apply Markov’s inequality to the nonnegative random variable (X — p)%:

o 2 0_2
P(X — 4l 2 &) = B((X — p)? 2 %) < DO _ 2
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Note

e Markov provides bounds using only the expectation.
e Chebyshev follows directly from Markov applied to (X — p)?2.

e These inequalities control the probability of large deviations and are key in proving
the Weak Law of Large Numbers and in analysing convergence of stochastic processes.

Example 1.3.18 (Application of Markov). If X > 0 with E[X] = 10, then P(X > 100) < 0.1.
Even without knowing the distribution, we obtain a useful bound.

Example 1.3.19 (Application of Chebyshev). If E[X] =0 and Var(X) = 1, then
1
P(|X|>5) < — =0.04.

This shows X is very unlikely to deviate far from the mean.

1.4 Conditional Expectation

1.4.1 Definition via the Radon-Nikodym theorem

Motivation. Suppose we want to “average” a random variable X given partial information,
represented by a sub-c-algebra G C F. We want a G-measurable random variable Y that acts
like X when tested against G:

/Yd]P’—/XdIP’, VG e g.
G G

The question: does such a Y exist, and is it unique? This is answered by the Radon-Nikodym
theorem.

Theorem 1.4.1 (Conditional expectation via Radon-Nikodym). Let (2, F,IP) be a probability
space, G C F a sub-c-algebra, and X € L*(Q, F,P). Then there exists a G-measurable random
variable Y, unique up to P-a.s. equality, such that

/YdIP:/XdP, VG €G.
e G

We call Y the conditional expectation of X given G, written

Y =E[X | g].

Proof outline. Define a set function v on G by
v(Q) = / XdP, Geg.
G
- v is a finite signed measure on (€2, G). - Moreover, v is absolutely continuous with respect to

PP restricted to G (since P(G) = 0 = v(G) = 0). - By the Radon-Nikodym theorem, there
exists a G-measurable function Y such that

(G) :/ YdP, VG €.
G
This Y is unique P-a.s. and is exactly E[X | G].
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Example 1.4.2 (Trivial o-algebra). If G = {(), Q}, then the only G-measurable random variables
are constants. Thus E[X | G] = E[X], the unconditional expectation.

Example 1.4.3 (Full o-algebra). If G = F, then X itself is G-measurable. Hence E[X | F] = X.

Example 1.4.4 (Discrete case: finite partition). Suppose G = o(Aj, ..., A;,), a finite partition
of Q with P(A4;) > 0. Then
m [y X dP

E[X | G] = P4

]-Aia
i=1
i.e. on each A;, the conditional expectation is the average of X restricted to A;.

Example 1.4.5 (Conditional expectation as regression). Let X,Y be square-integrable. If
G = o(Y), then E[X | G] is the L2-projection of X onto functions of Y, i.e. the unique G-

measurable random variable Z minimising E[(X — Z)?]. For instance, if (X,Y) are jointly

Gaussian with means py, iy, variances o2, 02, and correlation p, then
) ) X YY>» I

ox
EX | Y] = px +p—(Y — py).
oy

Note

The Radon—Nikodym theorem tells us that conditional expectation is just the Radon—
Nikodym derivative of one measure with respect to another. Formally, v(G) = [, X dP
is a measure on G, absolutely continuous with respect to P|g. The conditional expectation
E[X | G] is its Radon—Nikodym derivative. Intuitively, it is the “best guess” of X given the
information encoded in G.

1.4.2 Basic properties

Proposition 1.4.6 (Properties of conditional expectation). Let (2, F,P) be a probability space,
G C F a sub-c-algebra, and let X,Y € L'. Then:

1. Linearity: For a,b € R,
ElaX +bY | G] =aE[X | G] + bE[Y | G].

2. Monotonicity: If X <Y a.s., then

E[X |G] <E[Y |G] as.

3. Taking out what is known: If Z is bounded and G-measurable (so that XZ € L), then

E[XZ|G]|=ZE[X | G].
4. Tower property: If H C G C F, then

E[E[X | G]|#H] = E[X | H].

5. Law of total expectation:
E[E[X | 6] = E[X].

Proof sketch. All properties follow directly from the defining identity

/E[Xyg]dP:/XdP, VG € G.
G G
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(i) Apply the identity to aX + bY'.

(ii) If X <Y, then [, X < [,Y for all G € G, so the same inequality holds for their

conditionals.

(iii) If Z is G-measurable, pull Z out of the inner integral on each G, giving the result.

e (iv) Both sides are H-measurable and agree on all H € H, hence must coincide.

(v) Apply (iv) with #H trivial.

Example 1.4.7 (Finite partition). Let G = 0(A4,..., A,) with P(4;) > 0. Then

1
E[X|g]:zm/ X dP 1y,
i=1 oA

On each atom A;, the conditional expectation is just the average of X over A;.

Example 1.4.8 (Tower property in action). Suppose X is the outcome of a fair die roll. - Let
G = o({odd, even}) (parity). - Let H = {0,Q} (trivial). Then E[X | G] = 3 on odd outcomes

and 4 on even outcomes. Taking expectation again w.r.t. H gives 3.5, which is just E[X].

Example 1.4.9 (Independence and “taking out what is known”). If X, Y are independent and
integrable, then
E[X | Y] =E[X].

Indeed, functions of Y are o(Y')-measurable, and independence makes E[XZ | Y] = E[X]- Z
for such Z.

Note

These properties make conditional expectation behave like an “ordinary” expectation, but
relative to the information in G. - Linearity and monotonicity mirror those of the usual
expectation. - “Taking out what is known” says that G-measurable information can be
treated like a constant. - The tower property expresses consistency when conditioning step
by step. - The law of total expectation shows that conditional expectation is a refinement
of expectation.

These rules form the algebraic toolkit for manipulating conditional expectations in proba-
bility and stochastic calculus.

1.4.3 Conditional probability

Definition 1.4.10 (Conditional probability via conditional expectation). Let (2, F,P) be a
probability space, G C F, and A € F. The conditional probability of A given G is the G-
measurable random variable

P(A]G) :=E[14 ]G],

where 1 4 is the indicator of A. It is characterised by

/P(Ayg)dP:P(AmG), VG € g.
G
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Example 1.4.11 (Trivial o-algebra). If G = {0, Q}, then
P(A|G) =P(A).
Here the conditional probability reduces to the unconditional one.
Example 1.4.12 (Full o-algebra). If G = F, then
P(A|G)=14.

Given complete information, the conditional probability is either 0 or 1 depending on whether
A occurs.

Example 1.4.13 (Discrete case: die roll). Let X be the outcome of a fair die and A = {X = 6}.
Take G = o({odd, even}). Then

P(A]G)(w) =

0 if X(w) is odd,
1/3 if X(w) is even.

Thus P(A|G) is a random variable taking different constant values depending on the parity of
the outcome.

Example 1.4.14 (Bayes’ rule from conditional expectation). Suppose A, B € F with P(B) > 0
and let G = o(B). Then

_P(ANB) P(A N B°)
P(A|G) = P(B) 1p+ P(BY) 1pe.
Restricting to B gives the familiar formula
_P(ANB)
P(A|B) = “P(B)

Note

Conditional probability is just conditional expectation of indicators:
P(A|G) = E[14]G].

- With no information (G trivial), we recover the usual probability. - With full information
(G = F), the conditional probability is 0 or 1. - With partial information, it becomes a
random variable reflecting what is known.

In stochastic processes we often write P(A|F;): the probability of A given the information
available up to time t.

1.4.4 Jensen’s inequality

Theorem 1.4.15 (Conditional Jensen’s inequality). Let (2, F,P) be a probability space, G C F,
and let X € L'. If o : R — R is convex with X, o(X) € L, then

pE[X | G]) <E[p(X)|G] as.

Note

If G is the trivial o-algebra, then E[X | G] = E[X], so the theorem reduces to the classical
inequality
p(E[X]) < E[p(X)].
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Proof sketch. For convex ¢, one can find an affine function a + bx (supporting hyperplane) such
that
o(x) > a+br, VreR.

Taking conditional expectations gives
Elp(X) [G] = a+bE[X | G].
Since this holds for all supporting affine functions of ¢, we conclude

Elp(X) | 6] = oE[X | 4g]).

Example 1.4.16 (Quadratic convex function). Let X € L? and o(x) = 22. Then
(E[X | ))° <E[X*| ],
which reduces in the trivial-o-algebra case to the variance inequality (E[X])? < E[X?2].

Example 1.4.17 (Martingale to submartingale). If (M;) is a martingale and ¢ is convex, then
by conditional Jensen,

Elp(My) | Fo] = @(E[My | Fs) = o(Ms), s<t.
Hence (¢(My)) is a submartingale — a fundamental result in martingale theory.

Note

Jensen’s inequality shows that convex functions “push expectations upwards”. The condi-
tional version says the same holds when averaging relative to partial information G. This
is central in stochastic processes: convex transforms of martingales are submartingales,
underpinning many inequalities and convergence results in stochastic calculus.

1.5 Convergence Concepts

1.5.1 P-almost surely convergence

Definition 1.5.1 (P-almost sure convergence). Let (X,,)n>1 be random variables on (€2, F,P)
and X another random variable. We say that X,, converges to X P-almost surely (or a.s.) if

P{weQ: JLI{:OXH(W) =X(w)}) =1.

We write
X, X5 X,

Example 1.5.2 (Strong Law of Large Numbers). If (X;) are i.i.d. with E[X;] < oo, then
1 n
=3 " X; =5 E[X).
n
i=1

This is almost sure convergence: the sample average converges pointwise for almost every out-
come.
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Example 1.5.3 (Failure only on a null set). Let Q = [0, 1] with Lebesgue measure and define
Xn(w) = 1j9,1/p)(w). Then for w > 0, eventually X, (w) =0, so X,(w) — 0. At w =0, we have
X, (0) =1 for all n, so convergence fails. But {0} has measure zero, hence X,, — 0 a.s.

Note

Almost sure convergence is the strongest of the common convergence notions: it requires
Xp(w) = X (w) for “almost every” w, except possibly on a set of probability zero.

- It is pointwise convergence, but with tolerance for ignoring null sets. - It implies conver-
gence in probability, but not conversely:

X, % x = x, 5 x.

- Many limit theorems (e.g. the Strong Law of Large Numbers) are formulated in terms of
almost sure convergence.

1.5.2 Convergence in probability

Definition 1.5.4 (Convergence in probability). Let (X,) and X be random variables on
(Q, F,P). We say that X,, converges to X in probability if

Ve > 0, ILm P(| X, — X|>¢)=0.

We write ,
X, — X.

Example 1.5.5 (Vanishing noise). Let X,, = X + &, where &, ~ Uniform(—1/n,1/n) are
independent noise terms. Then X, 5 x , since deviations larger than £ become impossible as
n — o0o. However, almost sure convergence need not hold.

Example 1.5.6 (Sample averages: Weak Law of Large Numbers). If (X;) are i.i.d. with E[X;] =

< 00, then
1 « P
— E X; — u.
n-
=l
This is the Weak Law of Large Numbers.

Note

Convergence in probability requires that the probability of large deviations goes to zero.
- It is weaker than almost sure convergence:

X, X X = X, DX,

but not conversely.
- It is stronger than weak convergence:

X, 5x = x,%x.

- In practice, convergence in probability is the most useful notion in statistics, because it
captures convergence of estimators to the true parameter.
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1.5.3 LP convergence

Definition 1.5.7 (LP convergence). Let p > 1. We say that X,, converges to X in L? if

lim E[|X, — X|”] = 0.

n—oo

We write Lp
X, — X.

Example 1.5.8 (Normal variables with shrinking variance). If X;,, ~ N(0,1/n), then X,, z, 0,
since
E[X?2] = Var(X,) = 2 — 0.

Example 1.5.9 (Convergence in L! but not almost surely). Let Q = [0,1] with Lebesgue
measure and define

Xn(w) - 1[0,1/n] (w)
1
Then E[X,,] = 1/n — 0, so X, L5 0. However, X,,(0) =1 for all n, so X,, does not converge
to 0 pointwise at w = 0. This shows that LP convergence does not imply a.s. convergence.
Note

LP convergence is a norm convergence: the LP-distance between X, and X tends to zero.
- It is stronger than convergence in probability:

x, L x = x, 5 x

- It does not imply almost sure convergence in general. - It requires integrability: both X,
and X must belong to LP.

In applications, L? convergence is particularly important because it is tied to variance and
Hilbert space structure.

1.5.4 Weak convergence
Definition 1.5.10 (Weak convergence / convergence in distribution). We say that X, converges

in distribution (weakly) to X, written X, 4 x , if

lim Fy, () = Fx(z), Vz & R where Fy is continuous,
n—oo

where Fx is the cumulative distribution function (CDF) of X.
Example 1.5.11 (Normal variables collapsing to a point mass). If X,, ~ N(0,1/n), then
Xn L\ 0, the degenerate distribution at 0 with F'(z) = st

Example 1.5.12 (Convergence in probability implies weak convergence). If X, 2ox , then
automatically X, 4 X. For instance, if X,, = X + &, with &, ~ Uniform(—1/n,1/n) as before,
then X, £> X and hence also X, i) X.
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Note

Weak convergence is the weakest of the common convergence modes:

- It refers only to the convergence of distributions, not to pointwise behaviour of random
variables. - It does not require X,, and X to live on the same probability space. - It is
implied by convergence in probability:

x,5x = x,4x

- It is the natural framework for many asymptotic results in statistics and probability, most
famously the Central Limit Theorem.

1.5.5 Law of Large Numbers

Theorem 1.5.13 (Weak Law of Large Numbers (WLLN)). Let (X;);>1 be i.i.d. random vari-
ables with mean p = E[X;] < co. Then

1 P
*E X; — u.
n <

=1

Theorem 1.5.14 (Strong Law of Large Numbers (SLLN)). Let (X;)i>1 be i.i.d. random vari-
ables with mean p = E[X;] < co. Then

Iy as

= Z Xl — M.

n 4

=1

Example 1.5.15 (Sample averages of coin tosses). Let X; be ii.d. Bernoulli(p). Then the
sample average

_ 1 &

X =— X;X

1=

is the proportion of heads in n tosses. By the WLLN, X, Lif p. By the SLLN, X,, =% p. Thus
the empirical frequency converges to the true probability both in probability and almost surely.

Note

- The weak law ensures that averages converge to the mean in probability. - The strong
law strengthens this to almost sure convergence, i.e. pointwise convergence for almost every
outcome.

Both results formalise the idea that empirical averages stabilise around their expected value,
justifying the interpretation of E[X] as the “long-run average” of repeated trials.

1.5.6 Central Limit Theorem

Theorem 1.5.16 (Central Limit Theorem (CLT)). Let (X;)i>1 be i.i.d. random variables with
mean p and variance o2 € (0,00). Then

=2 (K= ) S N (0. 02).
=l
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Example 1.5.17 (Coin tosses). Let X; ~ Bernoulli(p). Then p = p, 0® = p(1 — p). By the
CLT,

Vi (Xn —p) % N(0, p(1 —p)).

Thus, for large n, the empirical proportion of heads is approximately normal with mean p and
variance p(1 — p)/n.

Note

The CLT is the cornerstone of probability and statistics. It says that suitably normalised
sums of i.i.d. random variables converge in distribution to a normal random variable, regard-
less of the original distribution (under mild moment conditions). This explains the ubiquity
of the Gaussian distribution in applied probability and statistics.

Summary

Convergence concepts compared:

Almost sure (a.s.): X, 2% X if X, (w) — X(w) for almost every w. Strongest form:
pointwise convergence except on a null set.

In probability: X, = X if P(| X, —X| >¢) = 0 for all e > 0. Weaker than a.s., stronger
than in distribution.

LRXe, 2 X it E[|X,, — X|P] — 0. Norm convergence, implies convergence in probability.

Weak (in distribution): X, 4 X if Fx, (z) = Fx(x) at continuity points of Fx. Weak-
est form: distributional convergence only.

1.6 Filtrations and Adapted Processes

1.6.1 Filtration (F;);>o

Definition 1.6.1 (Filtration). On a probability space (2, F,P), a filtration is a family of sub-
o-algebras
(Ft)t>0 € F such that F; C F; whenever s < ¢.

We interpret F; as the information available up to time t¢.

Definition 1.6.2 (Usual conditions / augmentation). A filtration (F;) satisfies the usual con-
ditions if:

1. Completeness: Every P-null set in F belongs to Fy (and hence to all F;).

2. Right-continuity: 7; =, Fy for all ¢ > 0.

Given any filtration, one can construct its P-augmentation that satisfies these usual conditions.

Example 1.6.3 (Natural filtration of a process). Let (Xt):>0 be a stochastic process on
(Q, F,P). Its natural filtration is

]:tX::o*(stogsgt),

the smallest o-algebra making the path segment (X;)s<: observable.
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Example 1.6.4 (Brownian filtration). If (W;);>0 is a Brownian motion, the canonical choice
is the (completed, right-continuous) natural filtration

YV = (F")i>o, FV :=o(W, : s < t) augmented to satisfy the usual conditions.
This is the standard setup for martingales and It6 calculus.

Example 1.6.5 (Discrete-time filtration from observations). At times 0 = tg < t1 < -+ < &y,
define
ftk = O’(Xto, coo ,th).

Then Fy, C --- C F;, captures information from progressively more observations.

Proposition 1.6.6 (Basic facts). Let (F;) be a filtration and t — X; a process.

1. IfY is Fs-measurable and s < t, then Y is also Fy-measurable.
2. If X is adapted to (F) (see next subsection), then for any Borel g, g(X3) is Fi-measurable.

3. If (Fy) is right-continuous, then conditioning at t or just after t coincides:

E[-|F] =E[-|[) Ful.

u>t

Summary

Filtration = information growth. F; encodes what can be observed by time ¢. The
usual conditions (complete & right-continuous) provide the technical framework needed for
martingale theory and stochastic integration.

1.6.2 Adapted processes

Definition 1.6.7 (Adapted process). Let (2, F,P) be a probability space with filtration (F)¢>o.
A stochastic process (X¢)¢>0 is said to be adapted to (F) if

X; is Fy-measurable for each ¢ > 0.

Example 1.6.8 (Natural filtration). If (X;) is any process, then it is automatically adapted to
its natural filtration
.EX:a(Xs:()SsSt).

Example 1.6.9 (Brownian motion). Let (W;) be a Brownian motion with its completed, right-
continuous natural filtration (F}V). Then (WW;) is adapted to (F}V). This is the canonical setup
in stochastic calculus.

Example 1.6.10 (Non-adapted process). Suppose (W) is a Brownian motion with filtration
(.FtW ). Define X; = Wp — W, for some fixed T' > t. Then X; depends on the future increment
W — W, which is not F}V-measurable. Thus (X;) is not adapted to (F}V).

Proposition 1.6.11 (Basic facts). Let (X;) and (Y;) be processes adapted to (Fy).

1. For any Borel function g, the process (g(X¢)) is adapted.

2. If both (Xy) and (Y;) are adapted, then so are (X +Y;) and (XY7).
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3. If (X¢) is adapted and (F:) is right-continuous, then the left-limit process (X¢—) is also
adapted.

Summary

Adapted process = no anticipation. At each time ¢, the value X; is measurable with
respect to the information F; available up to that time. Thus, an adapted process cannot
“see the future”. This non-anticipativity condition is essential for martingale theory and
stochastic integration.

1.6.3 Stopping times
Definition 1.6.12 (Stopping time). Let (F;):>0 be a filtration. A random time 7 :  — [0, o0]
is called a stopping time (with respect to (F)) if

{r<t}eF, Vvt>O0.

Note

Intuitively, whether 7 < t has occurred must be decidable using only the information avail-
able by time ¢. In other words, a stopping time is a random time that does not anticipate
the future.

Example 1.6.13 (Deterministic times). Any fixed time ¢y defines a stopping time 7(w) = to.

Indeed, {7 <t} is either () or Q, both of which are measurable.

Example 1.6.14 (First hitting time). For a process (X;) adapted to (F;), define
T=inf{t >0: X; > a}.

Then 7 is a stopping time: the event {r < t} depends only on the trajectory (Xs)s<¢, not on
the future.

Example 1.6.15 (Non-example). Let 7 = inf{t > 0 : X; > a} — 1. This is generally not a
stopping time, because to decide if 7 < ¢ one needs to know whether X;.; has crossed the
threshold, i.e. information from the future.

Proposition 1.6.16 (Basic properties).

1. If 7 and o are stopping times, then T A o and 7V o are stopping times.

2. If T is a stopping time and ¢ > 0 is deterministic, then T + ¢ is a stopping time provided
the filtration is right-continuous.

3. If (1) is a sequence of stopping times, then sup,, 7, and inf, 7, are stopping times.
Example 1.6.17 (Exit times for Brownian motion). For Brownian motion (W;), define
7 =1inf{t > 0: |W;| > 1}.

This is a stopping time, representing the first exit from (—1,1). Moreover, 7 < co almost surely.

Summary

Stopping times = random but observable decision times. They mark the random
instants at which a process hits a condition, in a way consistent with available informa-
tion. Stopping times are essential for martingale theory, optimal stopping problems, and
stochastic control.
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Chapter 2

Discrete-Time Processes

2.1 Basic Definitions

2.1.1 Stochastic process in discrete time

Note

A stochastic process is just a collection of random variables indexed by time. In the discrete-
time setting, time takes integer values (e.g. n = 0,1,2,...). Think of this as observing the
random system only at discrete snapshots rather than continuously.

Definition 2.1.1 (Discrete-time stochastic process). Let (2, F,[P) be a probability space. A
discrete-time stochastic process is a sequence of random variables

(Xn)n207 Xn 10— Rda
indexed by the non-negative integers. Each X, represents the state of the system at time n.

Example 2.1.2 (Simple random walk). Let (&,),>1 be i.i.d. random variables with

Define Xy = 0 and
X, = ng, n> 1.
k=1

Then (X, )n>0 is called the simple symmetric random walk. It models a particle on Z taking
independent £1 steps.

Example 2.1.3 (Markov chain on a finite state space). Let S = {1,2,...,m} be a finite set.
A process (X,)n>0 taking values in S is specified by an initial distribution 7wy and a transition
matrix P = (pij)ijes, where

pij = P(Xny1 =7 | Xn =1).
This is a discrete-time stochastic process with the Markov property.

Theorem 2.1.4 (Kolmogorov extension theorem, discrete case). Given consistent finite-dimensional
distributions

P(Xg € Ag,...,Xn € Ay), A; € BRY),

there exists a discrete-time stochastic process (Xp)n>0 realising these distributions.
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Note

Finite-dimensional distributions are the joint laws of finitely many coordinates
(Xnis---,Xpn,). The extension theorem guarantees that specifying these consistently is
enough to define a full process.

Example 2.1.5 (IID process). If X,, ~ ii.d. N(0,1), then (X,,),>0 is a discrete-time process
with independent standard Gaussian increments. This is the discrete analogue of white noise.

Note

Key mental models:
e Think of (X,,) as “random sequences” instead of a single random variable.
e Examples include coin tosses, dice rolls, daily stock returns, or random walks.

e The structure we impose later (filtrations, martingales, Markov property) will tell us
how the randomness unfolds over time.

2.1.2 Adaptedness to a filtration

Note

In probability theory, a filtration (F,,)n>0 models the growth of information over time. A
process (X,,) is adapted if its value at time n can be determined from the information
available up to time n. In other words, the process does not “see into the future”.

Definition 2.1.6 (Adapted process). Let (2, F,P) be a probability space with a filtration
(Fn)n>0- A discrete-time stochastic process (X, )n>0 is said to be adapted to (Fy,) if

X,, is Fp-measurable for each n > 0.
Example 2.1.7 (Natural filtration). Given any process (X,,), its natural filtration is

FX=0(Xo, X1,...,Xp).

n

This is the smallest filtration making (X,,) adapted. Intuitively, it records exactly the informa-
tion generated by the process up to time n.

Example 2.1.8 (Random walk). Let (X,,) be a simple random walk, X,, = Y, § with i.i.d.
steps (&). If we define F,, = o(&1,...,&,), then (X,,) is adapted to (F,) because X, is a
measurable function of the increments up to time n.

Example 2.1.9 (A non-adapted process). Suppose (W,,) is a random walk with its natural
filtration (.FXV ). Define Y;,, = W, 11 — W, i.e. the future increment at step n. Then Y, is not
F¥V-measurable, so (Y;,) is not adapted. This illustrates the “no peeking into the future” rule.

Proposition 2.1.10 (Basic properties). Let (X,,) and (Y;,) be processes adapted to a filtration
(Fn). Then:

1. For any Borel function g, the process (g(Xy,)) is also adapted.
2. Linear combinations and products of adapted processes are adapted.

3. If (X,,) is adapted, then (maxy<, Xi) is also adapted.
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Note

Adaptedness is a minimal requirement for most constructions in stochastic processes. It
ensures that decisions or events at time n depend only on the information available up to
n, not on future outcomes. This is crucial for defining martingales, stopping times, and
stochastic integrals.

2.1.3 Independence vs. Markov property

Note

Independence and the Markov property are two different ways of describing how random
variables relate over time.

e Independence: future variables are completely unrelated to the past.

e Markov property: the future may depend on the present, but only through the
most recent state, not the full history.

In practice, independence is stronger, while the Markov property is weaker but often more
realistic.

Definition 2.1.11 (Independence). A family of random variables (X),>0 is said to be inde-
pendent if, for any finite set of indices ny < - -+ < ng,

k
P(Xn, € A1,...,Xn, € Ay) = [[P(Xn; € 4;), A;j € B[R).
=l

Definition 2.1.12 (Markov property). A process (X,)n>0 with values in a measurable space
(S,S) satisfies the Markov property with respect to a filtration (F,) if

P(Xn-‘rlGA‘Fn):P(Xn—i-leA‘Xn)v AeS, n>0.

In words: given the present state X,,, the future X,, 11 is conditionally independent of the past
(Xoy. ooy Xn—1)-

Example 2.1.13 (IID sequence). Let (&,) be i.i.d. random variables. Then the process X,, = &,
is independent. It also satisfies the Markov property (trivially), since knowing X,, gives no
information about X, ;.

Example 2.1.14 (Random walk). Let X, = > ;& with i.i.d. increments (§). The in-
crements are independent, but the process (X,,) itself is not independent: X, ;1 and X,, are
strongly related. However, (X,,) does satisfy the Markov property, because the distribution of
X,+1 depends only on X,, and not on the full history.

Example 2.1.15 (Dependent but Markov). Consider a two-state Markov chain (X,) with

transition matrix
p_ 0.9 0.1
—\04 06)°

Clearly, X, 11 depends on X,, so the sequence is not independent. But it is Markov: the
distribution of the next state depends only on the current state.
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Note

e Independence — Markov property, but not vice versa.
e Independence is rare in time series (most real data have memory).

e The Markov property is the natural compromise: the process has memory, but only
of the most recent state.

e Financial models like random walks, binomial trees, and Markov chains rely on this
property.

2.2 Markov Chains

2.2.1 Definition and transition matrices

Note

A Markov chain is the most fundamental discrete-time model of dependence. It assumes
that the next state of the system depends only on the current state, not on the full history.
This makes it both mathematically tractable and widely applicable (queues, population
models, finance, etc.).

Definition 2.2.1 (Markov chain). Let (X,),>0 be a stochastic process on a countable state
space S. We say (X,,) is a Markov chain with respect to a filtration (F,) if

P(Xpt1=7|Fn) =P(Xpt1=J| X»n), Vji€S, n>0.
The conditional probabilities
pij =P(Xpnt1 =7 | Xn=1), i,j€S,
are called the transition probabilities.

Definition 2.2.2 (Transition matrix). For a finite or countable state space S, the transition
probabilities can be arranged into a matrix

P = (pij)ijes: pij 20, Zpij =1 Vi.
JES

P is called the transition matriz. It describes the full dynamics of the Markov chain.

Example 2.2.3 (Two-state chain). Let S = {0, 1} with transition matrix
0.7 0.3
P= (0.4 0.6> ;
If X,, =0, then X,,;1 = 0 with probability 0.7 and X, 1 = 1 with probability 0.3. Similarly,
from state 1, the chain moves to 0 with probability 0.4 and remains at 1 with probability 0.6.
Example 2.2.4 (Random walk on Z). Let (S,,) be a simple symmetric random walk:

P(Spi1=Sn+1]8) =3, P(Spy1=5,-1]5,) =3.

Here S = Z and the transition matrix is infinite, with p; ;41 = p;i—1 = %
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Proposition 2.2.5 (Distribution update). If m, is the distribution of X, written as a row
vector, then
T4l = T P.

Thus, starting from initial distribution my, we have m, = moP™.

Note

Key ideas to keep in mind:
e The Markov property means “memoryless” beyond the present.
e The transition matrix PP encodes all the dynamics.
e Computing future distributions reduces to repeated matrix multiplication.

e For infinite state spaces, P is not a literal matrix but an operator with the same
interpretation.

2.2.2 Chapman-Kolmogorov equations

Note

The Chapman-Kolmogorov equations formalise the idea that transitions over multiple steps
can be decomposed into successive one-step transitions. They provide the link between
short-term and long-term behaviour of a Markov chain.

Theorem 2.2.6 (Chapman-Kolmogorov equations). Let (X;,) be a Markov chain on state space
S with transition matriz P = (p;j). For alli,j € S and integers m,n > 0,

P(Xmin =3 | Xo=1) =Y PXpm=k|Xo=1)P(X, =j]| Xo=k).
keS

Equivalently, in terms of P,
Pl pipi

Idea of proof. Condition on the intermediate state X,,:

P(Xppn =4 | Xo=1)=> PXp=k|Xo=1)P(Xnin=13| Xm = k).
keS

By the Markov property, the second factor reduces to an n-step transition probability from k
to 7. This gives the formula above. O

Example 2.2.7 (Two-step transitions). Suppose S = {0, 1} with transition matrix
0.7 0.3
P= (0.4 0.6) ’
Then the two-step transition matrix is
0.7 0.3\ /0.7 0.3 0.61 0.39
2 pr— . pr— pu—
pr=r-r <0.4 O.6> (0.4 ().6) (0.52 O.48> ’
For example, starting at state 0, the probability of being in state 1 after two steps is 0.39.
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Example 2.2.8 (Random walk on Z). For the simple symmetric random walk, the probability
of moving from 7 to j in n steps is

n . . n —n
pgj):P(Sn:]|Sozz):(7w._i)2 ,
2

(n)

whenever n + j — i is even; otherwise p;;’ =0. These probabilities arise by repeatedly applying

the Chapman-Kolmogorov relation.

Note

Key consequences:

e The entire multi-step behaviour of a Markov chain is determined by the one-step
matrix P.

e Transition probabilities over n steps are given by the nth power P".

e This allows us to study long-run behaviour using matrix analysis (eigenvalues, eigen-
vectors, convergence).

2.2.3 Classification of states

Note

Not all states of a Markov chain behave the same way. Some states can be left forever
(transient), others are revisited infinitely often (recurrent). Among recurrent states, some
are periodic, others aperiodic. Classifying states is the first step in understanding the long-
run behaviour of a Markov chain.

Definition 2.2.9 (Communicating states). In a Markov chain (X,,) with state space S:

e We say i leads to j (written ¢ — j) if there exists n > 0 such that pf;;l) > 0.

e States i and j communicate if i — j and j — i.

Communication is an equivalence relation. The equivalence classes are called communicating
classes.

Definition 2.2.10 (Irreducibility). A Markov chain is called irreducible if all states communi-
cate with each other, i.e. the chain consists of a single communicating class.

Definition 2.2.11 (Recurrence and transience). A state i € S is

):OO.

o recurrent if P;(X,, = ¢ infinitely often) = 1, equivalently y > pfln
e transient if P;(X,, = ¢ infinitely often) < 1, equivalently » > pgl ) < 0.

Definition 2.2.12 (Periodicity). The period of a state i is

d(i) := ged{n > 1 :pgl) > 0}.

If d(i) = 1, then i is aperiodic; otherwise i is periodic with period d(3).

Example 2.2.13 (Random walk on Z). For the simple symmetric random walk on Z:
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e All states communicate, so the chain is irreducible.
e Each state is recurrent in dimension 1, but transient in higher dimensions (classical result).

e Each state has period 2, since returns are only possible after an even number of steps.

Example 2.2.14 (Two-state chain). For the chain with transition matrix
0.7 0.3
P= (0.4 O.6> ’
the states communicate, so the chain is irreducible. Both states are recurrent (finite irreducible

chains have only recurrent states). They are also aperiodic, since p;; > 0 implies possible returns
in both even and odd numbers of steps.

Proposition 2.2.15 (Finite irreducible chains). If a Markov chain has a finite state space and
15 wrreducible, then all states are positive recurrent. That s, the expected return time to any
state is finite.

Note
Key insights:
e Transient states may be visited, but eventually are left behind forever.

e Recurrent states are visited infinitely often; if the chain is finite and irreducible, every
state is recurrent.

e Periodicity matters for convergence: a chain with period d > 1 oscillates between
classes of states, while aperiodic chains “mix” smoothly.

These classifications pave the way for the study of stationary distributions.

2.2.4 Stationary distributions

Note

A stationary distribution describes the long-run behaviour of a Markov chain. It is a
probability distribution on the state space that remains unchanged as the chain evolves. If
the chain is irreducible and aperiodic (under mild conditions), it converges to its stationary
distribution regardless of the starting state.

Definition 2.2.16 (Stationary distribution). Let (X,,) be a Markov chain with transition ma-

trix P on state space S. A probability vector m = (m;);es is called a stationary distribution
if
T =mnP, Zmzl, m; > 0.

Equivalently, if Xo ~ 7, then X, ~ 7 for all n > 0.

Example 2.2.17 (Two-state chain). Consider the chain with transition matrix

0.7 0.3
P= (0.4 O.6> i
To find the stationary distribution, solve m# = 7P with my + m; = 1. This gives

— (4 3
m=(42).

Thus in the long run, the chain spends about 57% of the time in state 0 and 43% in state 1.
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Example 2.2.18 (Random walk on a finite cycle). Let S = {0,1,...,m — 1} and define a
symmetric random walk with

1
Pii+1 (mod m) = Pii—1 (mod m) = 2+
This chain is irreducible and symmetric. The stationary distribution is uniform:

mz%, 1=0,....,m—1.

Proposition 2.2.19 (Existence and uniqueness). If a Markov chain is finite, irreducible, and
aperiodic, then:

e [t admits a unique stationary distribution .

e For any initial distribution u, the distribution of X,, converges to m as n — co:
uwP" — .
Note
Key insights:
e The stationary distribution is the long-run equilibrium of the chain.

e In finite irreducible aperiodic chains, every trajectory “forgets” its starting point and
settles into 7.

e For reducible chains, multiple stationary distributions may exist, each supported on
a closed communicating class.

e In applications, stationary distributions often describe steady-state behaviour: e.g.
long-run market share, equilibrium queue lengths, or genetic distributions.
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Summary

e Definition: A Markov chain is a discrete-time process where the future depends only
on the present, not on the full past. Transition probabilities p;; form the transition
matrix P, which encodes the dynamics.

e Chapman—Kolmogorov equations: Multi-step transition probabilities are ob-
tained by matrix powers:

pmtn — pmpn g = moP".

e Classification of states:

— States communicate if transitions are possible in both directions.

Chains are irreducible if all states communicate.

— States can be recurrent (visited infinitely often) or transient (eventually aban-
doned).

The period of a state i is d(i) = ged{n : pgl) > 0}. Aperiodic states mix smoothly.
e Stationary distributions:

— A stationary distribution 7 satisfies 7 = 7w P.

— If the chain is finite, irreducible, and aperiodic, then there exists a unique sta-
tionary distribution, and

uwP™ — 7 for any initial distribution p.

— Stationary distributions describe the long-run equilibrium behaviour of the chain.

2.3 Discrete-Time Martingales

2.3.1 Martingales, submartingales, supermartingales
2.3.2 Symmetric random walk

2.3.3 Doob martingale

2.3.4 Properties

2.3.5 Doob’s decomposition

2.3.6 Doob’s maximal inequality

2.3.7 Optional stopping theorem

2.3.8 Martingale convergence theorem

2.3.9 Strong law of large numbers
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Chapter 3

Continuous-Time Processes

3.1 Basic Concepts

3.1.1 Definition of a continuous-time process
3.1.2 Filtration and adaptedness
3.1.3 Right-continuous (cadlag) sample paths

3.1.4 Kolmogorov continuity theorem
3.2 Poisson Process

3.2.1 Definition and construction
3.2.2 Inter-arrival times

3.2.3 Properties

3.2.4 Distribution

3.2.5 Applications
3.3 Brownian Motion

3.3.1 Definition and properties
3.3.2 Scaling and time-homogeneity
3.3.3 Quadratic variation

3.3.4 Quadratic covariation

3.3.5 Lévy’s characterisation

3.3.6 Strong Markov property

3.3.7 Reflection principle
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Chapter 4

Stochastic Calculus

4.1 Motivation

4.1.1 Why ordinary calculus fails for Brownian motion

4.1.2 1It6 formula vs. Taylor expansion
4.2 Quadratic Variation and Covariation

4.2.1 Quadratic variation

4.2.2 Quadratic covariation
4.3 Stochastic Integrals

4.3.1 Definition of the It6 integral
4.3.2 Extension to square-integrable processes
4.3.3 It6 isometry

4.3.4 Key properties
4.4 Ito’s Lemma

4.4.1 Statement for one-dimensional Brownian motion
4.4.2 Multidimensional Ito’s lemma

4.4.3 Examples
4.5 Stochastic Differential Equations

4.5.1 General form
4.5.2 Existence and uniqueness
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4.5.3 Weak vs. strong solutions

4.5.4 Examples
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Chapter 5

Financial Applications

5.1 Risk-Neutral Valuation

5.1.1

5.1.2

5.1.3

5.1.4

5.1.5

Fundamental theorem of asset pricing
Equivalent martingale measure
Risk-neutral pricing formula

Change of numéraire

Incomplete markets

5.2 Black-Scholes Model

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

Market assumptions
Black—Scholes PDE
Closed-form option pricing
Greeks

Hedging strategies

5.3 Numerical Methods

5.3.1

5.3.2

5.3.3

5.3.4

Monte Carlo simulation

Variance reduction methods

Binomial and trinomial trees

Finite difference methods

5.4 Exotic Options

5.4.1

5.4.2

Barrier options 49

Asian options
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