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Abstract

The goal of this research is to investigate the performance of different volatility models in varying market
conditions. Specifically, the periods analysed were 2017-2018 representing low volatility, and 2020-2021
representing high volatility. The data chosen was the S&P 500 daily price (ticker: ^QSPC) from 2005-2024.
Backtesting methods were then employed to assess the model performance in the specific time periods.
The analysis compares GARCH, tGARCH, skewed tGARCH, and EWMA models. Results indicate that
tGARCH and skewed tGARCH consistently outperform others across both periods, accurately capturing
market risks and extreme events. Conversely, the EWMA model fails to meet robustness criteria during
high-volatility periods, highlighting its limitations.
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Introduction

Volatility is a cornerstone of financial markets, playing a key role in pricing, portfolio management, and
risk control. Understanding and predicting market volatility remains a critical challenge for practitioners
and academics alike. Volatility modelling, therefore, is one of the most fundamental tools in financial risk
management. In a rapidly changing industry, where there are numerous models and parameters to choose
from, having a deep understanding of when and which models perform best is essential for efficient and
accurate risk analysis.

This research contributes to the growing body of literature on volatility modelling. One notable example
is a thesis titled “Modeling of Market Volatility with APARCH Model” (Ding 2011), which focused on
comparing the APARCH volatility model with other stochastic volatility models. Another study, “Eval-
uating Volatility Forecasts in Various Equity Market Regimes” (Felletter 2017), analysed GARCH and
leveraged-GARCH models using the Volatility Index (VIX), with performance measured by metrics such
as Mean Square Error and Theil U1.

This research aims to build upon and bridge these studies. It shares similarities with Ding (2011) in
analysing a variety of volatility models and with Felletter (2017) in evaluating performance under varying
market conditions. However, it diverges in its approach by employing backtesting methods, such as Viola-
tion Ratios and the Bernoulli Coverage Test, to assess model performance. By doing so, this study offers
a novel perspective on evaluating volatility models and their practical applications in risk management.

The objective of this research is to evaluate the performance of multiple volatility models across varying
market conditions, using backtesting methods to assess their reliability and effectiveness. This approach
aims to provide both academics and practitioners with valuable insights into the comparative strengths
and weaknesses of these models under dynamic market environments.

Data

The chosen data were daily prices for the S&P 500 Index from 2005-01-01 to 2024-12-31 and has been
downloaded from WRDS. This data was chosen for its ability to represent broad market dynamics, its
high liquidity, and its relevance in financial risk analysis. As shown in the next section this data is highly
suitable for the purposes of this research.

The data was loaded into R and the log returns (𝑟𝑡) were calculated by,

𝑟𝑡 = log(𝑃𝑡) − log(𝑃𝑡−1)

where 𝑃𝑡 is the price at time 𝑡.

Summary Data Analysis

Next some simple data analysis was conducted. We start by generating simple plots showing the price
trend and returns of the S&P 500.
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Figure 1: S&P-500 Index Price Trend (2005–2025)

This plot shows how the S&P 500 has changed over time, notably the financial crisis in 2008 and the
COVID-19 financial crash is clearly visible. Following this we create a plot showing the returns.
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Figure 2: S&P-500 Index Log Returns

From these two plots we can see a period of relative stability from 2012-2019 and highly volatile conditions
from COVID-19 and the 2008 Crisis. Ultimately for this research the periods chosen cover the years leading
up to COVID-19, and the years encompassing the subsequent financial fallout.

Next we calculate certain important statistical results and conduct statistical tests to verify stationarity,
volatility clustering, and autocorrelation of returns.
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Table 1: Summary Statistics for Returns

Result
Mean 0.000288
Unconditional Volatility 0.012283
Skewness -0.522960
Kurtosis 15.858176
JB Test Statistic 33146.637516
ADF Test Statistic (Returns) -16.763053
ADF P-Value (Returns) 0.010000
ADF Test Statistic (Squared Returns) -9.593922
ADF P-Value (Squared Returns) 0.010000
LB Test Statistic (Squared Returns) 5027.831017
LB P-Value (Squared Returns) 0.000000

The mean return is close to zero which is expected for financial returns, similarly the volatility is consistent
with expected volatility for daily returns. The negative skewness indicates the distribution of returns has
a longer left tail, this means larger negative returns occur more frequently than large positive returns.
This is common with financial returns, reflecting the greater downside risk. Kurtosis is typically compared
to the normal distribution, which has kurtosis of three, and a value of 15.9 indicates fatter tails - i.e. more
extreme returns than would occur if the returns were normally distributed.

Following this, different tests were conducted. First the Jarque-Bera normality test was done and a result
of 33000 means the returns are not normally distributed. Secondly, ADF (Augmented Dickey-Fuller)
tests were conducted to analyse stationarity, and the results indicate stationarity is satisfied. Finally, the
Ljung-Box Test was conducted on the squared returns to detect volatility clustering and autocorrelation.
The large test statistic and p-value close to zero strongly indicate volatility clustering is present.

The conclusion drawn from this analysis is that the chosen data is appropriate for the research in question,
so next we move on to creating the volatility forecasting models.

Empirical Analysis

For the entirety of this analysis RStudio was used and numerous libraries such as quantmod, tseries,
and most importantly, rugarch were used for the statistical analysis. Other libraries such as ggplot and
knitr were used for formatting and presentation purposes.

The plan for analysis was as follows:

1) Create the forecasting models using the whole dataset.
2) Using the forecasting models to forecast data within the chosen time periods.
3) Using the forecasted volatility to create forecasts for Value-at-Risk (VaR).
4) Finally, conducting backtesting methods: Violation Ratios and Bernoulli Coverage Test to assess

individual model performance.
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Volatility Models

In this section the volatility models were generated. The chosen models to investigate were GARCH,
tGARCH, Skewed tGARCH, and EWMA. Choosing the correct parameters was done by considering
varying (𝑝, 𝑞) values and calculating the Akaike Information Criterion (AIC) (Akaike, 1974), and choosing
the parameters from the model with the most negative AIC. Similarly, for the tGARCH and Skewed
tGARCH which contain an additional degrees of freedom parameter, different values were analysed and
chosen based on the AIC.

The AIC results for all models are presented in the appendix.

Standard GARCH

The GARCHmodel (Generalised Autoregressive Conditional Heteroskedasticity), introduced by Bollerslev
(1986) as an extension of the ARCH model developed by Engle (1982), has become a widely used tool for
modelling conditional volatility.

It is defined by:

𝜎2
𝑡 = 𝜔 +

𝑝
∑
𝑖=1

𝛼𝑖𝜀2
𝑡−𝑗 +

𝑞
∑
𝑗=1

𝛽𝑗𝜎2
𝑡−𝑗

where 𝜎𝑡 is the conditional volatility, (𝜔, 𝛼, 𝛽) are the main model parameters, and (𝑝, 𝑞) are the lags
in the volatility model. 𝜀𝑡 represents the residuals, in the case of GARCH these are assumed normally
distributed with mean zero.

A function to create GARCH models for all combinations of 𝑝 = (1, 2, 3) and 𝑞 = (1, 2, 3) was made and
at every iteration the AIC was stored. This is simply done by extracting the AIC from the ugarchfit
which is saved as infocriteria(fit)[1]. The actual formula for AIC is defined as:

𝐴𝐼𝐶 = 2𝑘 − 2 log( ̂ℒ)

where 𝑘 is the number of estimated parameters and ̂ℒ is the maximum value of the likelihood function.

After choosing the best model the log likelihood score was calculated, this is used to provide a simple
analysis of model performance over the whole dataset.

tGARCH

tGARCH differs from GARCH by having 𝜀𝑡 ∼ 𝑡𝜈(0, 𝜎2
𝑡 ), where 𝑡𝜈 is the Student’s 𝑡 distribution with 𝜈

degrees of freedom. This is instead of the normal distribution.

Analysis was done similar to the previous section, but models were also tested with varying degrees of
freedom.
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Skewed t-GARCH

The skewed tGARCH means one side of the distribution is fatter than the other, this is particularly useful
for financial returns. As previously stated the returns have negative skew, so it is logical to model using
a skewed distribution.

This means 𝜀𝑡 ∼ 𝑡(𝜉, 𝜈) where 𝜉 is the skewness parameters. 𝜉 > 1 indicates positive skewness and 𝜉 < 1
indicates negative skewness.

Fundamentally the formula remains unchanged,

𝜎2
𝑡 = 𝜔 +

𝑝
∑
𝑖=1

𝛼𝑖𝜀2
𝑡−𝑗 +

𝑞
∑
𝑗=1

𝛽𝑗𝜎2
𝑡−𝑗

Exponentially Weighted Moving Average (EWMA)

The final model chosen was EWMA, a model popularised by JP Morgan in their RiskMetrics framework
(JP Morgan, 1996), is a widely used tool for estimating conditional volatility due to its simplicity and
efficiency.

As the data is daily, 𝜆 = 0.94, was chosen.
This volatility model is given by:

𝜎̂2
𝑡 = (1 − 𝜆) 𝑟2

𝑡−1 + 𝜆𝜎̂2
𝑡−1,

where 𝑟𝑡−1 is the return at time 𝑡−1 and 𝜎̂2
𝑡 is the EWMA variance forecast at time 𝑡. This model is consid-

erably easier to use than the previous GARCH models, the simpler calculation also allows for expanding
the testing window over longer time frames without greatly increasing computational requirements.

Backtesting

Since the objective of this project is to analyse how effective each model is, we test the models by doing
backtesting. This involves using the models to forecast results, then conducting analysis with violation
ratios and the Bernoulli Coverage Test by Kupiec (1995).

Rolling Window Analysis

We start by conducting a rolling window analysis over the data ranges (2016-01-01, 2017-12-31) and
(2019-01-01, 2020-12-31) to represent the periods of low and high volatility, respectively. The conditional
volatility of daily returns for these two periods were 𝜎(2017)

𝑡 = 0.421% and 𝜎(2020)
𝑡 = 2.177% compared to

the unconditional volatility of 𝜎 = 1.228%. This uses the models we previously made, then forecasting
one day ahead from the start of the specified period and repeated over the whole testing window.
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Figure 3: Rolling Window Volatility Forecasting (2017-2018)
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Figure 4: Rolling Window Volatility Forecasting (2020-2021)

From these results we can see that the different GARCH models appear similar, but EWMA deviates
greatly.
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Violation Ratios

In this section we use the volatility forecasts to also forecast a one-day VaR0.99 and then compare this to
the actual returns to obtain our observed number of violations. The expected number of violations are
calculated by Testing Window Length * 0.01. Finally, we simply we find violation ratio as such,

Violation Ratio = Observed Number of Violations
Expected Number of Violations

After calculating the violation ratio for all four models and the two periods the results are presented in a
plot with a threshold indicating where models would ideally lie.
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Figure 5: Violation Ratio Plot with Threshold

A good model would typically a violation ratio between 0.8 and 1.2. However, these results are not
conclusive, and further testing was done to analyse the statistical significance.

Coverage Test

In this section we are particularly interested in analysing whether the observed violation matches with
the expected violation, or if there is significant statistical difference. We do this by conducting a Bernoulli
Coverage test with a significance level of 5%. The resulting test statistic is then compared against the
critical value of 𝜒2

(1)(5%) = 3.841.
The formula is given as,

Bernoulli Test Statistic = −2 ([log(𝑝)𝑉 + log(1 − 𝑝)(𝑛 − 𝑉 )] − [𝑛 log(𝑉
𝑛 ) + (𝑛 − 𝑉 ) log(1 − 𝑉

𝑛 )])
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where, 𝑉 = ∑𝑛
𝑖=1 𝑉𝑖 is the number of violations, 𝑛 is the length of the data (the testing window), and 𝑝

is the VaR % that was used - in the case of this research, 𝑝 = 0.01.
We visualise these results similarly to the violation ratios by plotting the test statistic and marking the
critical value.
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Figure 6: Bernoulli Coverage Test

Clearly visible is that in the period of low volatility all models are below the critical value, however during
high volatility EWMA fails. This is consistent with the Violation Ratio test, except during low volatility
when EWMA and GARCH did not meet the criteria of a good model.

Results and Analysis

The results for the log likelihood of the four models are presented below, this assesses how well the model
fits the full data range. This is particularly important when choosing which model, but for the purposes
of this research we are more interested in the performance over a specific data range.

Table 2: LogLikelihood For Different Models

Model LogLikelihood
GARCH 15622.43
tGARCH 15755.44
Skew tGARCH 15770.96
EWMA 15491.73

From this we can see that the skewed tGARCH provided best fit the data. The results from the backtesting
are now presented,
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Table 3: Violation Ratio Results

Period Model Violation Ratio
2016-2018 GARCH 0.3952569
2016-2018 t-GARCH 1.1857708
2016-2018 Skew t-GARCH 1.1857708
2016-2018 EWMA 1.5810277
2019-2021 GARCH 1.1764706
2019-2021 t-GARCH 1.1764706
2019-2021 Skew t-GARCH 1.1764706
2019-2021 EWMA 4.7058824

Table 4: Coverage Test Results

Model Period Test Statistic Exceeds Critical
GARCH 2016-2018 1.2128885 FALSE
GARCH 2019-2021 0.0759162 FALSE
t_GARCH 2016-2018 0.0832404 FALSE
t_GARCH 2019-2021 0.0759162 FALSE
Skew_t_GARCH 2016-2018 0.0832404 FALSE
Skew_t_GARCH 2019-2021 0.0759162 FALSE
EWMA 2016-2018 0.7332448 FALSE
EWMA 2019-2021 18.6297607 TRUE

As stated previously we can assess a model to be good if the violation ratio lies between approximately 0.8
and 1.2, we can clearly see that EWMA fails under both market conditions and when further investigating
with the coverage tests EWMA once again fails during the period of high volatility.

The GARCH models nearly all fit well and do not violate the coverage test critical value, however GARCH
appears to greatly underestimate the expected losses in periods of low volatility.

The results of this testing leans towards the tGARCH and skewed tGARCH models being the most
optimal in both high and low periods of market volatility.

The results from the evaluation of the volatility models offer valuable insights into their relative perfor-
mance under varying market conditions. By examining the violation ratios and conducting the Bernoulli
Coverage Test, the performance of GARCH, t-GARCH, Skew-t GARCH, and EWMA models can be
contextualised within the broader scope of financial risk management.

The violation ratios indicate how well each model captures extreme events, as expected by the 1% Value-
at-Risk (VaR). For instance:

• The GARCHmodel demonstrated reasonably consistent performance despite its simplicity. However,
in times of low market volatility it failed to accurately represent financial losses.

• The tGARCH model, which incorporates heavier tails from the Student’s t-distribution improved
upon GARCH in all metrics and performed optimally in all market conditions.

• The skewed tGARCH model, which differs from tGARCH by incorporating skewness, a feature
present in not only the returns data for this analysis, but more generally in returns data, out-
performed tGARCH. However, to further see the difference it would be valuable to conduct more
research, within different markets and over varying estimation windows.
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• The EWMA model consistently misrepresented the realised market risks and was not able to accu-
rately capture the clustering or distributional asymmetry - likely due to the exponential smoothing.
Seemingly, the only benefit to this model would be the computational efficiency and simplicity.

These results do align with what we would expect to see in theory.

Compared to studies such as Ding (2011), which emphasised APARCH models, and Felletter (2017), which
used alternative performance metrics, this research provides a complementary perspective by focusing on
backtesting methods. The use of violation ratios and Bernoulli Coverage Test offers a practical and robust
approach to evaluating risk models, bridging gaps in existing research.

Conclusion

The results of this analysis show that GARCH and EWMA were the poorest performing. They had
the lowest likelihoods scores for the whole data range and for the market condition specific analysis the
EWMA model failed the Violation Ratio and Coverage Test. Similarly, the GARCH model performed
poorly during the period of low volatility, with a violation ratio of 0.4. Both tGARCH and the skewed
tGARCH models performed well, meeting the requirements of the backtesting analysis to be considered
a good model.

There are limitations of this research. Originally the plan also considered the APARCH(p,q) model,
defined as:

𝜎𝛿
𝑡 = 𝜔 +

𝑝
∑
𝑖=1

𝛼𝑖(|𝜀𝑡−𝑖| − 𝛾𝑖𝜀𝑡−𝑖)𝛿 +
𝑞

∑
𝑗=1

𝛽𝑗𝜎𝛿
𝑡−𝑗

(Bollerslev, 2008; Ding, Granger, & Engle, 1991)

The GARCH model can be obtained from this by setting 𝛿 = 2 and 𝛾 = 0.
Initial analysis gave a likelihood score greater than all the other models, which suggests it to have fit the
whole data range the best. However, the backtesting of this model required far greater computational
power. Libraries such as parallel were used to run the backtesting on multiple CPU cores, however this
still would have taken over 10 minutes on a high-power computer. For reproducibility this was removed,
and more focus was placed on the other GARCH and EWMA models.

Similarly, the issue of computing power meant a more limited testing window was used during the back-
testing analysis. This could potentially be addressed using machine learning/neural network based back-
testing methods which may be more efficient for GARCH backtesting. Further analysis on this topic with
varying estimation windows, both shorter and longer, could provide valuable insight into how the models
perform in varying market conditions.

Expanding the code used in this research to accommodate for a more thorough analysis is relatively easily
done, however as stated this would require far more computational power.

Finally, the applications of this research to the context of risk management would be to use the skewed
tGARCH or tGARCH for volatility forecasting. These models were shown to be highly effective and
produce reliable results which allow for forecasting potential losses in financial portfolios.
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Appendix

Table 5: GARCH

p q AIC
1 1 -6.5326
2 1 -6.5339
3 1 -6.5334
1 2 -6.5322
2 2 -6.5341
3 2 -6.5330
1 3 -6.5316
2 3 -6.5336
3 3 -6.5334

Table 6: tGARCH

p q df AIC
1 1 3.0 -6.5571
2 1 3.0 -6.5608
3 1 3.0 -6.5604
1 2 3.0 -6.5566
2 2 3.0 -6.5604
3 2 3.0 -6.5602
1 3 3.0 -6.5562
2 3 3.0 -6.5601
3 3 3.0 -6.5598
1 1 3.5 -6.5743
2 1 3.5 -6.5776
3 1 3.5 -6.5772
1 2 3.5 -6.5739
2 2 3.5 -6.5773
3 2 3.5 -6.5769
1 3 3.5 -6.5735
2 3 3.5 -6.5769
3 3 3.5 -6.5766
1 1 4.0 -6.5823
1 2 4.5 -6.5856
2 2 4.5 -6.5883
3 2 4.5 -6.5879
1 3 4.5 -6.5852
2 3 4.5 -6.5880
3 3 4.5 -6.5876
1 1 5.0 -6.5877
2 1 5.0 -6.5901
3 1 5.0 -6.5897
1 2 5.0 -6.5873
2 2 5.0 -6.5898
3 2 5.0 -6.5893
1 3 5.0 -6.5868
2 3 5.0 -6.5894
3 3 5.0 -6.5890

Table 7: Skew tGARCH

p q df AIC
1 1 3.0 -6.5598
2 1 3.0 -6.5636
3 1 3.0 -6.5632
1 2 3.0 -6.5594
2 2 3.0 -6.5632
3 2 3.0 -6.5629
1 3 3.0 -6.5589
2 3 3.0 -6.5628
3 3 3.0 -6.5626
1 1 3.5 -6.5781
2 1 3.5 -6.5814
3 1 3.5 -6.5810
1 2 3.5 -6.5777
2 2 3.5 -6.5810
3 2 3.5 -6.5807
1 3 3.5 -6.5772
2 3 3.5 -6.5806
3 3 3.5 -6.5804
1 1 4.0 -6.5869
1 2 4.5 -6.5910
2 2 4.5 -6.5937
3 2 4.5 -6.5933
1 3 4.5 -6.5905
2 3 4.5 -6.5934
3 3 4.5 -6.5930
1 1 5.0 -6.5937
2 1 5.0 -6.5962
3 1 5.0 -6.5958
1 2 5.0 -6.5933
2 2 5.0 -6.5958
3 2 5.0 -6.5954
1 3 5.0 -6.5928
2 3 5.0 -6.5954
3 3 5.0 -6.5951
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