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2 European Put
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® Standard normal CDF
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2.3 Vega
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3 Binary Call (Cash-or-Nothing)
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3.4 Theta
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4 Binary Put (Cash-or-Nothing)
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4.4 Theta
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Nearly identical to call, just ®(—dy) instead of ®(dy) and adding additional term
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5 American Call
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(equals the European call when ¢ = 0, since early exercise has no value).
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6 American Put
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